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Abstract—The kernelized correlation filter (KCF) is one of
the state-of-the-art object trackers. However, it does not rea-
sonably model the distribution of correlation response during
tracking process, which might cause the drifting problem, espe-
cially when targets undergo significant appearance changes due
to occlusion, camera shaking, and/or deformation. In this paper,
we propose an output constraint transfer (OCT) method that by
modeling the distribution of correlation response in a Bayesian
optimization framework is able to mitigate the drifting problem.
OCT builds upon the reasonable assumption that the correlation
response to the target image follows a Gaussian distribution,
which we exploit to select training samples and reduce model
uncertainty. OCT is rooted in a new theory which transfers
data distribution to a constraint of the optimized variable, lead-
ing to an efficient framework to calculate correlation filters.
Extensive experiments on a commonly used tracking benchmark
show that the proposed method significantly improves KCF, and
achieves better performance than other state-of-the-art track-
ers. To encourage further developments, the source code is made
available.

Index Terms—Correlation filter, online learning, tracking.

I. INTRODUCTION

ISUAL object tracking is a fundamental problem in com-
puter vision, which contributes to various applications,
including robotics, video surveillance, and intelligent vehi-
cles [1]-[3]. While many works consider object tracking in
simple scenes as a solved problem, online object tracking
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in uncontrolled real-world scenarios remains open, with key
challenges like illumination change, occlusion, motion blur,
and texture variation [1], [2], [4]-[6]. To this end, the con-
ventional data association and temporal filters [7] that rely
on motion modeling typically fail due to the dynamic and
changing object/background appearances.

Most recently, kernalized correlation filters (KCFs), which
aims to construct discriminative appearance model for tracking
from a learning-based perspective, has shown to be promising
to handle the appearance variations [8]-[10]. KCF incor-
porates translated and scaled patches to make a kernelized
model distinguishing between the target and surrounding envi-
ronment [8]. It also adopts fast Fourier transform (FFT)
and inverse FFT (IFFT) to improve the computational effi-
ciency. Experimental comparisons show that KCF-based track-
ing is competitive among the state-of-the-art trackers in
terms of speed and accuracy [8]. Although much suc-
cess has been demonstrated, irregular correlation responses
and target drifting have been observed. These are particu-
larly common when updating target appearance in a long
tracking stream with occlusion, camera shake, and great
appearance changes [11]. From the perspective of learning,
sample noises are introduced to the filter, which degrades
the model learning and drift the tracker away [11], [12].
To alleviate such risk of drifting, we advocate that the
tracker should model the correlation response (output) to
reduce noisy samples to achieve stable tracking. We pro-
pose preventing the drifting through controlling maximum
response to follow the Gaussian distribution, which not
only reduce noise samples, but also gain the robustness to
variations.

As another intuition, it is well known that data lies on
specific distributions, i.e., faces are considered to be from sub-
space [13], [14]. As long as the optimal solution resides on
the data domain, the constraints derived from the data struc-
ture can bring robustness to the variations [15], [16]. To this
end, any tracking framework taking advantage of the implicit
data structure can improve tracking. Imposing a data struc-
ture (distribution) as a constraint is actually a new and flexible
way to solve the optimization problems [15], [16], which has
been promising in various learning algorithms. The main crux
is how to efficiently embed structure constraint in the opti-
mization method. In this paper, we demonstrate the existence
of a highly practical solution to include Gaussian constraints
in KCE.

Fig. 1 shows the proposed output constraint trans-
fer (OCT) method,! which mainly innovates at learning robust

IThe source code will be publicly available on mpl.buaa.edu.cn.
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Fig. 1. Scheme of OCT-KCF for object tracking.

kernerlized correlation filters for object tracking. Two key
innovations are introduced: 1) the Gaussian prior constraint is
exploited to model the filter response and reduce noisy sam-
ples and 2) a new theory termed OCT is proposed to transfer
data distribution to be a constraint of the optimized variable.
By the constraint, our correlation filters are particularly prone
to find the data (response output) following a certain distribu-
tion?> and gain the robustness to variations. By the proposed
OCT theory, instead of directly controlling the response output
in a brute-force way, we alternatively transfer the distribution
information from the data to be a constraint of the optimized
variable.

The Gaussian assumption on correlation output is supported

from three aspects.

1) Itis first supported by [8], and shows that a single thresh-
old on the correlation response (output) is used, which
inspire us that the correlation response (output) actually
follows a simple distribution, i.e., Gaussian.

2) As evident on tracking, a simple distribution is necessary
and significant to achieve high efficiency. The complex
distribution, i.e., Gaussian mixture model, can not result
in an efficient model as ours. As for the complex distri-
bution, it would be further considered in our future work
and could be possible to have a more general theory.

3) As a final evidence, our extensive experiments on
the commonly used benchmark [17] confirm that the
Gaussian distribution is highly effective.

The rest of this paper is organized as follows. Section II intro-
duces the related work. We present the constraint problem
on correlation filters in Section III, and detail how Gaussian
constraints can be efficiently embedded in an online optimiza-
tion framework in Section IV. Finally, extensive experiments
are discussed in Section V, while we draw our conclusions in
Section VI.

II. RELATED WORK

Visual tracking has been extensively  studied
in [12] and [17]. In this section, we discuss the meth-
ods closely related to this paper, i.e., the appearance models,
and more particularly, the correlation filter-based models.

An appearance model consists of learning a classifier online,
to predict the presence or absence of the target in an image
patch. This classifier is then tested on many candidate patches
to find the most likely location [8], [18]-[20]. Popular learning
schemes include kernel learning [21], [22], latent structure [2],
multiple instance learning [23], boosting [24], [25], met-
ric learning [26], and structured learning [27]. However, the

2 Assumed Gaussian for its simplicity, although other complex distributions
may be more reasonable.
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online tracking algorithms often encounter the drifting prob-
lems. As for the self-taught learning, these misaligned samples
are likely to be added and degrade the appearance models. To
avoid drifting, the most famous tracking-by-detection (TLD)
method employs positive—negative learning to choose “safe”
samples [16]. The compressed tracking method employs non-
adaptive random projections that preserve the structure of the
image feature space of objects [28]. It compresses samples of
foreground targets and the background using the same sparse
measurement matrix to guarantee the stability of tracking [28].

The initial motivation for our research was the recent suc-
cess of correlation filters in tracking [29]. Correlation filters
have been proved to be competitive with far more complicated
approaches, but using only a fraction of the computational
power, at hundreds of frames per second. They take advantage
of the fact that the convolution of two patches is equiva-
lent to an element-wise product in the FFT domain. Thus,
by formulating their objective in the FFT domain, they can
specify the desired output of a linear classifier for several
translations, or image shifts [8]. Taking the advantages of
correlation filters, Bolme et al. [29] proposed to learn a min-
imum output sum of squared error filter for visual tracking
on gray-scale images. Heriques et al. [30] proposed using
correlation filters in a kernel space based on exploiting the cir-
culant structure of tracking-by-detection with kernels (CSK),
which achieves the highest speed in the commonly used
benchmark [17]. CSK is introduced based on kernel ridge
regression, which has been one of the hottest topics in cor-
relation filter learning. Using a dense sampling strategy, the
circulant structure exploits data redundancy to simplify the
training and testing process. By using histogram of gradi-
ent (HOG) features, KCF is further proposed to improve the
performance of CSK. Danelljan et al. [10] exploited the color
attributes of a target object and learn an adaptive correla-
tion filter by mapping multichannel features into a Gaussian
kernel space. Recently, Ma et al. [11] introduced a redetect-
ing process to further improve the performance of KCF [8].
Zhang et al. [9] incorporated context information into filter
learning and model the scale change based on consecutive
correlation responses. The DSST tracker [10] learns adaptive
multiscale correlation filters using HOG features to handle the
scale variations. Recent works involve using learned convolu-
tional filters for visual object tracking [32], [33]. Although
much success has been demonstrated, the existing works do
not principally incorporate the distribution information into the
procedure of solving the optimized variable.

III. OUTPUT CONSTRAINT TRANSFER IN KCF

In this section, we first introduce KCF, and then describe
how the response output is constrained by a Gaussian
distribution.

A. Kernelized Correlation Filter

KCF starts from the kernel ridge regression method [8],
which is formulated as

subject to y; —w ¢(x) =& Visllwl| <B  (P])

where x; is the M x N-sized image. ¢ (.) is a nonlinear trans-
formation. ¢ (x;) (later ¢;) and y; are the input and output,
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respectively. &; is a slack variable. B is a small constant. Based
on the Lagrangian method, the objective corresponding to (P1)
is rewritten as
MxN MxN
Ly=Y &+ Y Alvi—wiei—a]+a(Iwl? - B2) ()
i=1 i=1
where A is a regularization parameter (A > 0). From (1),
we have

a=(K+r)"ly
w = Zaiq&i. (2)

The matrix K with elements Kj; = k(Pix, P’x) is circulant

given a kernel such as the gaussian kernel k [30]. Taking

advantage of the circulant matrice, the FFT of a denoted by
F(a) is calculated by

FO)

Fl@) = ——— 3

@ = o 7 3)

where F denotes the discrete Fourier operator, and k™ is the

first row of the circulant matrix K. In tracking, all candidate

patches that are cyclic shifts of test patch z are evaluated by

F() = F(k) 0 F@ *)

where @ is the element-wise product and X is a learned target
appearance image calculated by (6a) [11], F(p) is the output
response for all the testing patches in frequency domain. We
then have

5= max(f—1 (]—"(57))) (5)

where F~! is the IFFT. The target position is the one with the
maximal value among y calculated by (5). The target appear-
ance and correlation filter are then updated with a learning
rate 7 as

(6a)

'%t — (1 _ n)‘%[—l + nxt
(6b)

Fle)y=(1- n)}'(a"l) +nF(@).

Kernel ridge regression relies on computing kernel correlation
(K% and k). Considering that kernel correlation consists of
computing the kernel for all relative shifts of two input vec-
tors. This represents the last computational bottleneck, as an
evaluation of n kernels for signals of size n will have quadratic
complexity. However, using the cyclic shift model will allow
us to efficiently exploit the redundancies in this expensive
computation. The computational complexity for the full kernel
correlation is only O(n - log(n)).

B. Problem Formulation

In tracking applications, the correlation response of the tar-
get object is assumed to follow a Gaussian distribution, which
is not discussed in the existing works. In this section, we solve
the (P1) by exploiting the Gaussian assumption in an optimiza-
tion process. Now, the original (P1) can be rewritten in the tth
frame as

sty —wlhig, =&

' ~ N(Mty 02,1)

lwll <B (P2)

where y; is the Gaussian function label for the ith sample ¢;
in the rth frame [8]. © and o2 are the mean and variance
of the Gaussian model A/, respectively. 3’ is a new variable
to represent the response of the target image based on w’*/
and (5). As mentioned above, Gaussian prior is defined as

5 ~ /\/‘(Mty 02,1)‘ )

In (P2), only ' ~ N (u!, o>%) is unsolved. As shown in the
maximum likelihood method in the probability theory [34],
Gaussian prior can be alternatively solved through minimizing
[ — 1)?/20"] + lnQ7 - 6)/2). As only [( — u')?/20"]
is related to the optimized variable, u' and o2 are solved
iteratively. And for simplicity, o> can be considered as a
constant in the tth time. Thus, the denominator is ignored,
we alternatively minimize (§' — u)>. The smaller the value
is, the more possible the correlation response in current frame
satisfies the Gaussian prior.

IV. OCT-BASED KCF

In the previous section, we describe a new framework to
calculate KCF. Nevertheless, it remains complex to solve the
tracking problem, due to the new variable ﬁl. Here, we intro-
duce the proposed OCT theory to further reformulate (P2) into
an extremely simple problem.

A. Theory of Transferring Constraints: OCT

The OCT theory aims to simplify the optimization process
in particular for (5' — u’)?. As a result of the theory §' is
replaced by a new constraint only added on the variable w.
This is remarkable, the Gaussian constraint is deployed with-
out extra complexity, i.e., §' is not involved. Here, §' = wT/x’
with x” as the target object.

Theorem: Minimizing of (w!-'x' — u")? is transferred to min-
imizing ||w' — w'~!||?, when the learned target appearances
have no great changes in two consecutive frames.

Based on the theorem, the data distribution is transferred
to a constraint only for the unsolved variable, by which (P2)
is further relaxed, leading to an extremely efficient method to
calculate correlation filters.

Proof: The mean of Gaussian is updated as

w'=1—pyu' "+ pwh'E (8)

where i’ is the learned target appearance in the tth frame,
iteratively acquired by

F=1-p '+ px 9)
where x' is the target in the 7th frame. Similar to (8), /~! can
be calculated as

W= (1= o)t 4 pw TR (10)
By plugging (10) back into (8), we get
i == p)((1 = P2+ ) T ()

3u and o2 are calculated based on all previous frames in the tracking
procedure.
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which is rewritten as

WT lxl‘ Ml — _,0(1 _ p)wT,tfl"tfl
_ (1 _ p)z pr txt +wT txt (12)
Here, w'>'x' is approximated by w’>’&’, which does not change
the tracking result. Thus, (12) is rewrltten as
wT,lxI _ Ml — _p(l _ p)wT,l—l)’El—l
— (A =p) W+ A= pw" '+ (13)

where €] is a small constant. Plugging (9) back into the above
equation, we have

wliyd _ w = —p(l

+ (-

To—1 -1 2 12
—(=p)n

- pw —p
)2 Tt 1— l+(1_p)prlxt+61
(14)
Based on the hypothesis that the learned target appearances
', fc’_l) have no great changes in two consecutive frames,
we have

wT txt

i = p(l _p)<th wli— I)At 1
ra- p)z(wT»’fc’*‘ — ;ﬁ*z) te (15
where € is a small constant
R I
+ o = (W =W el
<oy [

where C is a constant. From the above inequality, the mini-
mization of (w'x' — u")? is converted to minimizing ||w’ —
w'~1||?, theorem is proved. -

(16)

B. OCT Solution to (P2)

Bayesian optimization is a powerful framework which
has been successfully applied to solve various problems,
i.e., parameter tuning. The Bayesian optimization can also be
used to solve (P1). Two of the KKT conditions from (1) are

26 =B A7)

2w =) Bid;. (18)

i
According to our theory, we add the minimizing of [|w' —
w'=1||? to replace the Gaussian constraint in (P2). However,
it is still a little complicated for our problem. Based on (18),

we simply use ||8' — ﬂ”l |2, and obtain a dual form for (P2)
via the Lagrangian method, which is formulated in a Bayesian

framework as

eofet(w. o)) = =5 B - g AR+ X
i ij i

2

— s> (B =B —aBR

)

Redefining of = B!/21, we come up with the following
optimization problem:

max —AZZazl—i—ZkZa Vi —)»Za ot’K
— 4)%s Z(af —affl)z.
i

19)

(20)
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Fig. 2. Evaluation of A based on precision.
and we have
(M + 4xrsl + K)a! =y + dhsa! ™! 1)

Then the FFT of « is calculated as
F(y) + 4rsF (')

t t 2.t _
F(""(“"’ ))_ F(k) + A + 4As @2)
which is rewritten as
F(k) + & F(y)
F t t 2,t —
CUE) FOO) + 2+ 40 ° F) + 4
I oF(). @3
F(k) + A+ 4xs '
Defining n as
F(k) + A
__FB+xr 4)
F(k) + » + 4As
we have
F(tx‘|(ut, a”)) —JOF@+ (-0 F(aH) (25)

where u! and o>’ are used to select the samples as shown

in (26). p is a matrix with the same size as F(«). According
to (25), the update of the filter relies on the evolving 7,
which is different with KCF (6b) that relies on a constant.
More details about n can also refer to our source code. To be
concluded from the results mentioned above, the iterative for-
mula of correlation filter (25) is obtained from the theoretical
derivation.

C. Coarse and Fine Tuning Based on Gaussian Prior

Due to the appearance variations of the target, the tracker
might gradually drift and finally fail. Different from existing
works using threshold to detect the failure case, we argue that
the property of Gaussian prior can well prevent drifting. In
particular, we adopt the Gaussian prior to select samples when
their response output belong to a Gaussian distribution, that is:
the sample is chosen, only when its response output belongs
to a Gaussian distribution

¥ —u
O—-[

<7 (26)
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Algorithm 1 OCT Algorithm for Object Tracking

1: Initial target bounding box by = [xg. yo, W, hl,

2: if the frame n < 20

3: repeat

4:  Crop out the search windows according to b,,_1, and extract
the HOG features.

5:  Compute the maximum correlation response y using Eqn.4 and
Eqn.5 and record the maximal correlation response as yj

6:  The position is obtained according to the maximal correlation

0.7

0.6

0.2

—_e— e —- - = [ p—— P e———— Er————=u

Tiger1 - mean
Tiger1 - variance
Jogging1 - mean
Jogging1 - variance

0 50 150 200

Number of samples

250 300 350

Fig. 4. Illustration of Gaussian mean and variance on the Tigerl and Joggingl
sequences.
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response
7. Updating target appearance and correlation filter using Eqn.6a
and Eqn.25.
8: until n == 20
9: end
10: Compute the mean p and variance o2 using all previous frames.
11: if n > 20
12: repeat
13:  Crop out the search window and extract the HOG features.
14:  Compute the maximal correlation response y using Eqn.4 and
Eqn.5.
R N
5. if |7 ‘ > T
16:  Crop out the coarse regions
Z =1{z1,22, ..., Zn,#n,} according to the coordinates calculated
by Eqn.27 and Eqn.28 around the center of b,,_
17:  Coarse searching step:
Detect the patch z in which the target appears with maximal
probability using Eqn.30 and Eqn.31
18:  Fine searching step:
Locate the object precisely using Eqn.(4) and Update target
appearance and correlation filter using Eqn.6a and Eqn.25
19:  end
20:  Updating p and o2
21: until End of the video sequence.
22: end
09} E
4
08| i
07 3
06 .
S
o5t .
[
o
04t E
03} i
02t E
01 i
5 10 15 20 25 30 35 40 45 50
n
Fig. 3. Evaluation of n based on precision.
where 7, = 1.6 is empirically set to a constant. Here, we

introduce a fine-tuning process to precisely localize the target
for sample selection in a local region, instead of searching
over the whole image extensively. The tracker activates the
fine-tune process when the maximal correlation response is
out of the Gaussian distribution (drifting). We first detect the
coarse region, where the target is most likely to appear near
the location in previous frame. We then search a coarse region
from n; directions around the center of the latest location
(x0, yo)- The coordinates of a center location for coarse regions

100 300 500 700 9S00 1000 1100 1300 1500 1700 2000

s

Fig. 5. Evaluation of s based on precision.

are calculated by

X0 + i * rg % cos(i; * tg) for i mod 2 =0

= 27
Px X0 + iy x rgx cos(iy x tg + ¢) for i mod 2 = 1 @7
) yo i x sk sin(ip * 1) for iy mod 2 = 0 28)
by = Yo + i % rg x sin(i; x t; + ¢) for iy mod 2 = 1.
where r; = (radius/n;), i, € {1,...,n:},t;, = Qu/ng), i €
{1,...,n}, ¢ = (t;/2). Finally, n,xn; patches centered around
the target are cropped as
Z = {le 2255 an*n,}- (29)

In the coarse process, the maximal correlation response of each
patch is obtained by

= max(F*‘ (}'(zi) - f(kzlf) © f(a))).

Then the patch in which the target appears with maximum
probability is calculated as

(30)
7= arg max(zl, ey Zin e an*nt)- 3D
1

The fine-tuning step is executed to find the location () of
the object precisely as shown in (4). The initialized process
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Tustration of KCF and OCT-KCF on Basketball and Shaking sequences. (a) Good performance is achieved when the response (output) of KCF

is observed to follow a Gaussian distribution on the Basketball sequence. (b) OCT (green rectangular) is used to improve the performance of KCF (red
rectangular) on the Shaking sequence, and correlation response in OCT-KCF follows a Gaussian distribution.
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Fig. 7.

is empirically set during the first 20 frames. The fine-tuning
strategy is easily implemented to update the localization of the
tracked target. To sum up, Algorithm 1 recaps the complete
method.

V. EXPERIMENTS

In this section, we evaluate the performance of our
tracker on 51 sequences of the commonly used tracking

Comparison between OCT-KCF (green line) and KCF (red line) based on CLE.

benchmark [17]. In this tracking benchmark [17], each
sequence is manually tagged with 11 attributes which
represent challenging aspects in visual tracking, including
illumination variations, scale variations, occlusions, defor-
mations, motion blur, abrupt motion, in-plane rotation,
out-of-plane rotation, out-of-view, background clutters, and
low resolution.
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Success and precision plots according to the online tracking benchmark [17].

e OCT=KCF

KCF

Fig. 9. Tllustration of some key frames.
TABLE I
COMPARISONS WITH STATE-OF-THE-ART TRACKERS
ON THE 51 BENCHMARK SEQUENCES
OCT-KCF KCF DSST TLD STC CSK Struck
Ref. Ours [8] [10] [16] [9] [31] [28]
Speed (FPS) 51 185 59 87 410 430 13
Precision 83.4 742 | 73.7 | 60.8 | 542 | 545 65.6
Success rate 57.4 51.7 55.4 437 | 36.8 | 39.8 474

A. Parameters Evaluation

We have tested the robustness of the proposed method in
various parameter settings. For example, an experiment is done
based on a subset of [17]4 as shown in Fig. 2, the precision is
not changed much when A is set from 10~/ to 1072, About the
initialized number of samples for Gaussian model, we tested
different values in Fig. 3, and the performance is very stable
around 20 that is finally chosen in the following experiments.
Moreover, we illustrate Gaussian mean and variance in the
tracking process in Fig. 4, which appear to be stable if the

4The datasets are shown in Fig. 5.

target is well tracked for the Tigerl sequence, otherwise it
seems randomly for the Joggingl sequence due to the wrong
candidate tracked. s is a parameter used in (25), the experiment
based on a subset of [17] is done as shown in Fig. 5. The
performance of OCT is affected a litter by choosing different
values of s. On most sequences (also average) the results on
s = 1000 is better than others. So we choose s = 1000 in
our experiment. To be consistent with [8], we set A = 1074,
p = (1/t) with ¢ as the frame number, and the searching
size is 1.5. The Gaussian kernel function (standard variance
= 0.5) and most parameters used in OCT-KCF are empirically
chosen according to [8]. For other parameters, we empirically
set n, =5, n, = 16 on all sequences.

Fig. 6 shows that KCF achieves a good performance when
the correlation response of the target image follows a Gaussian
distribution, i.e., in the Basketball sequence. A failure, i.e., in
the Shaking sequence, is observed when the output is sharply
changed. Fig. 6 also shows that the proposed OCT method can
force correlation response of KCF to follow a near-Gaussian
distribution, and improves the tracking results of KCF on
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Fig. 10. Precision plots for the 11 attributes of the online tracking benchmark.

the Shaking sequence. We compare OCT-KCF with KCF in
terms of the central location error (CLE) in Fig. 7. It can
been seen that the proposed OCT-KCF gets stable performance
in terms of CLE, which is clearly indicated by the smooth
curves. In contrast, the curves of KCF have hitting turbulence.
As illustrated in the coke sequence, both OCT-KCF and KCF
lose the target at about the 275th frame, nevertheless, the
OCT-KCEF can relocate it at about the 275th frame while KCF
fails to do that. The reason is that OCT can help KCF find-
ing the candidate patch whose correlation response satisfies a

20 30
Location error threshold

Gaussian distribution and constraining the tracker from drift-
ing. Similarly, the OCT-KCF tracker achieves much better
performance in the sequences of Couple, Deer, Football, etc.,
than KCF. The CLE results support our previous analysis that
OCT-KCEF significantly outperforms the conventional KCF.
In Fig. 8, we report the precision plots which measures
the ratio of successful tracking frames whose tracker out-
put is within the given threshold (the x-axis of the plot,
in pixels) from the ground-truth, measured by the center
distance between bounding boxes. The overall success and
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Fig. 11.  Success plots for the 11 attributes of the online tracking benchmark.
precision plots generated by the benchmark toolbox are also
reported. These plots report top-10 performing trackers in
the benchmarks. As shown in Table I, the proposed method
reports the best results. The OCT-KCF and KCF achieve
57.4% and 51.7% based on the average success rate, while
the famous Struck and TLD trackers, respectively, achieve
47.4% and 43.7%. In terms of Precision, OCT-KCF and KCF,
respectively, achieve 83.4% and 74.2% when the threshold
is set to 20. We also compare with DSST, one of latest
variants of KCF, which shows that OCT-KCF achieves a
significant performance improvement in terms of precision
(10.7% improved) and success rate (2% improved). These
results confirm that the Gaussian prior constraint model con-
tributes to our tracker and enable it performs better than
state-of-the-art trackers. The full set of plots generated by
the benchmark toolbox are also reported in Figs. 10 and 11.
From the experimental results, it can be seen that the pro-
posed OCT-KCF achieves significantly higher performance

04 06
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in cases of in-plane rotation (5.9% improvement over KCF),
scale variations (4.2% improvement over KCF), deformations
(6.7% improvement over KCF), motion blue (3.3% improve-
ment over KCF) than other trackers (i.e., KCF). This shows
that the distribution constrained tracker is more robust to
variations mentioned above.

In Fig. 9, we illustrate tracking results from some key
frames. In the first row, OCT-KCF can precisely track the
coke, while the conventional KCF tracker fails to do that. The
famous TLD tracker could relocate the coke target after miss-
ing it in 44th frame. Nevertheless the tracking bounding boxes
of the TLD tracker is not as precise as those of OCT-KCF.
It is also observed that our proposed OCT-KCF tracker works
very well in other sequences, e.g., Couple, Deer, and Football.
In contrast, all other compared trackers get false or imprecise
results in one sequence at least.

On an Intel I5 3.2 GHz (4 cores) CPU and 8GB RAM,
the KCF can run up to 185 frames/s, while the OCT-KCF
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achieves 51 frames/s. Without losing the real-time perfor-
mance, the tracking performance is significantly improved by
OCT-KCF about 6% on the average success rate and 10% on
the precision.

VI. CONCLUSION

We proposed an OCT method to enhance commonly used
correlation filter for object tracking. OCT is a new frame-
work introduced to improve the tracking performance based
on the Bayesian optimization method. To improve the robust-
ness of the correlation filter to the variations of the target,
the correlation response (output) of the test image is reason-
ably considered to follow a Gaussian distribution, which is
theoretically transferred to be a constraint condition in the
Bayesian optimization problem, and successfully used to solve
the drifting problem. We obtained a new theory which can
transfer the data distribution to be a constraint of an opti-
mization problem, which leads to an efficient framework to
calculate correlation filter. Extensive experiments and com-
parisons on the tracking benchmark show that the proposed
method significantly improved the performance of KCF, and
achieved a better performance than state-of-the-art trackers.
In addition, the performance is obtained without losing the
real-time tracking performance. Although high performance
is obtained, the drifting detection function (26) is too simple
for practical tracking problems, which might fail to start the
fine-tuning process when the targets suffer from occlusion or
abrupt motion. Therefore, the future work will focus on new
drifting detection methods to achieve higher tracking perfor-
mance. Moreover, we will also try to improve OCT based on
other machine learning methods, such as [35]-[39], to solve
the long-term tracking problem.
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