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Conformer: Local Features Coupling Global
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Abstract—With convolution operations, Convolutional Neural
Networks (CNNs) are good at extracting local features but ex-
perience difficulty to capture global representations. With cas-
caded self-attention modules, vision transformers can capture
long-distance feature dependencies but unfortunately deteriorate
local feature details. In this paper, we propose a hybrid network
structure, termed Conformer, to take both advantages of con-
volution operations and self-attention mechanisms for enhanced
representation learning. Conformer roots in feature coupling of
CNN local features and transformer global representations under
different resolutions in an interactive fashion. Conformer adopts
a dual structure so that local details and global dependencies are
retained to the maximum extent. We also propose a Conformer-
based detector (ConformerDet), which learns to predict and refine
object proposals, by performing region-level feature coupling in an
augmented cross-attention fashion. Experiments on ImageNet and
MS COCO datasets validate Conformer’s superiority for visual
recognition and object detection, demonstrating its potential to be
a general backbone network.

Index Terms—Feature fusion, image recognition, object
detection, vision transformer.

I. INTRODUCTION

CONVOLUTIONAL Neural Network (CNNs) have signif-
icantly advanced computer vision tasks such as image

recognition, object detection, and instance segmentation [1],
[2], [3], [4], [5], [6]. This can attribute to convolution oper-
ations which collect hierarchical and rich features as image
representation and the pooling operations which handle local
object deformation by enlarging the receptive fields.

Despite of the advantages of CNNs [1], [2], [3], [4], [5],
[6], they are limited by the local receptive field and thereby
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experience difficulty to capture global representations, e.g.,
long-distance relationships among visual elements. Such long-
distance relationships are critical for high-level vision tasks.
One solution is enlarging the receptive field by using intensive
pooling operations, which however damage feature resolution
and discrimination power.

Recently, the transformer architecture [7] has been introduced
to vision tasks [8], [9], [10], [11], [12], [13], [14], [15], [16].
The ViT method [8] constructs a sequence of tokens by splitting
each image to patches with positional embeddings and applies
cascaded transformer blocks to extract token vectors as represen-
tations. Thanks to the self-attention mechanism and multi-layer
perceptron (MLP) structure, vision transformers significantly
enlarged receptive fields, constituting global representations
with long-distance feature dependencies.

Unfortunately, vision transformers are observed ignoring lo-
cal feature details, which decreases the discriminability between
backgrounds and foregrounds, Fig. 1(c) and (g). To solve, the
tokenization module [8] leveraged CNN feature maps as input
tokens [11] or used sliding windows [17] to extract fine-detailed
representation. Nevertheless, the problem to fully exploit the
complementarities of local features and global representations
in a uniform framework remains to be elaborated.

In this paper, we propose a dual network structure, termed
Conformer, with the aim to enhance feature representations
by coupling CNN-based local features with transformer-based
global representations. Conformer consists of a CNN branch
and a transformer branch which respectively follow the design of
ResNet [4] and ViT [8]. The two branches form a comprehensive
combination of local convolution blocks, self-attention modules,
and MLP units. During training, the cross entropy losses are used
to supervise both the CNN and transformer branches to couple
CNN-style and transformer-style features.

Considering the feature misalignment between CNN and
transformer features, an Feature Coupling Unit (FCU) is de-
signed as the bridge. On the one hand, to fuse the two-style
features, FCU leverages 1×1 convolution to align the channel
dimensions, down/up sampling strategies to align feature resolu-
tions, and LayerNorm [18] and BatchNorm [19] to align feature
values. In an interactive fashion, FCU eliminates the semantic
divergence between two kinds of features. Furthermore, FCU de-
composes the features by assigning them learnable coefficients
so that the feature components are orthogonal and complemen-
tary. In this way, FCU enhances the global perception capability
of local features and the local details of global representations
to a maximum extent.
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Fig. 1. Comparison of feature maps of CNN (ResNet-101) [4], vision transformer (DeiT-S) [10], and the proposed Conformer. The patch tokens in transformer
are reshaped to feature maps for visualization. While CNN activates discriminative local regions (e.g., the peacock’s head in (a) and tail in (e)), the CNN branch
of Conformer takes advantage of global cues from the vision transformer and thereby activates complete object (e.g., full extent of the peacock in (b) and (f)).
Compared with CNN, local feature details of the vision transformer are deteriorated (e.g., (c) and (g)). In contrast, the transformer branch of Conformer retains the
local feature details from CNN while depressing the background (e.g., the peacock contours in (d) and (h) are more complete than those in (c) and (g)). This figure
is best viewed in color.

In Fig. 1, we visualize and compare the features of CNNs,
Transformer, and Conformer. While conventional CNNs (e.g.,
ResNet-101) tend to retain discriminative local regions (e.g.,
the peacock’s head or tail), the CNN branch of Conformer can
activate the full object extent, Fig. 1(b) and (f). When solely us-
ing transformers, for the missing local fine-details (e.g., blurred
object boundaries), it is difficult to distinguish the object from
the background, Fig. 1(c) and (g). Coupling of local features and
global representations significantly enhances discriminability,
Fig. 1(d) and (h).

The Conformer method was first proposed in our ICCV 2021
paper [20]. In this full version, it is promoted by introducing
the orthogonal feature coupling unit to improve the feature
complementary and augmented cross-attention unit (ACU) for
feature alignment and region-level feature coupling. Based on
feature coupling in both the backbone and the detector head,
we design a Conformer-based object detector (ConformerDet).
ConformerDet first predicts sparse proposals by using trans-
former tokens. The predicted object proposals are progressively
refined for object detection by iteratively coupling the trans-
former features with CNN local features. Experiments validate
that coupling features from the two architectures can enhance
the discriminability and localization accuracy of objects.

The contributions of this paper are summarized as follows:
� We propose the Conformer network with a dual structure,

which naturally inherits the structure and generalization
advantages of CNNs and vision transformers.

� We propose the Feature Coupling Unit (FCU), which fuses
convolutional local features with transformer-based global
representations in a complementary and interactive fash-
ion. We further propose the augmented cross-attention unit
(ACU) for feature coupling on the detector head, validating
the superiority of Conformer structure for object detection.

� Under comparable parameter complexity, Conformer out-
performs CNNs and vision transformers by significant
margins. With comparable computational costs, Con-
formerDet outperforms the CNN-based and transformer-
based detectors. Experimental results demonstrate the ad-
vantages to fuse CNN and Transformer features as visual
representation.

II. RELATED WORK

CNNs With Long-Range Feature Dependency. CNNs can be
regarded as a hierarchical ensemble of local features with pro-
gressively enlarged receptive fields. Unfortunately, CNNs [1],
[2], [4], [5], [21], [22], [23] experience difficulty to capture long-
range feature dependencies although they are good at organizing
local features. To solve, one solution is to define larger receptive
fields by introducing deeper architectures and/or more pooling
operations [6], [24]. Dilated convolution [25], [26] increased the
sampling step size, while deformable convolution [27] learned
the sampling positions. SENet [6] and GENet [24] leveraged
global average pooling to aggregate global context and then used
it to re-weight feature channels, while CBAM [28] respectively
used global Maxpooling and Avgpooling to refine features in
spatial and across channels.

The other solution is the global attention mechanism [29],
[30], [31], [32], [33], which has demonstrated advantages when
capturing long-distance dependencies in natural language pro-
cessing [7], [34], [35]. The non-local operation [29] was intro-
duced to CNNs in a self-attention fashion so that the response
at each position is a weighted sum of the features at all (global)
positions. Attention augmented convolutional networks [31]
concatenated convolutional feature maps with self-attentional
feature maps to augment convolution operations. Relation Net-
works [32] proposed an object attention module, which pro-
cesses a set of objects simultaneously through interaction be-
tween their appearance feature and geometry.

However, existing solutions that introduce global cues to
CNNs have obvious disadvantages. For the first solution, larger
receptive fields require more intensive pooling operations, which
reduce feature resolutions. For the second solution, the straight-
forward combination of convolutional operations with attention
mechanisms could interfere the training procedure.

Vision Transformers. As a pioneered work, ViT [8] validated
the feasibility of pure transformer architectures for vision tasks.
One important conclusion is that self-attention mechanisms
capturing feature long-distance dependencies are crucial for
image classification [9], [10], [11], object detection [12], [14],
[36], semantic segmentation [15], image enhancement [13],
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weakly-supervised object localization [37] and image gener-
ation [16], [38].

However, the self-attention mechanisms in vision transform-
ers often ignore local feature details and object structures. To
solve, DeiT [10] proposed using a distillation token to transfer
CNN-based features to vision transformer while T2T-ViT [11]
using a tokenization module to re-organize the image to tokens
considering neighboring pixels. Swin Transformer [17] used a
hierarchical architecture computed with Shifted windows, which
bring not only fine-detailed features but also higher efficiency.
The Multiscale Transformer [39] and Pyramid Transformer [40]
created feature pyramids with early layers operating at high spa-
tial resolution to model simple low-level visual information, and
deeper layers at spatially coarse, but complex, high-dimensional
features.

Despite of the substantial progress, vision transformers are
far from perfect. While the tokenization in vision transformer
could destruct object structures [41], the ignorance of local
spatial constrains of features aggregate the training difficulty.
This inspires us to resort to CNNs, which possess sophisticated
theoretical basis, design criterion and training policies.

In the related works, one commonly used strategy is replac-
ing some self-attention blocks in transformers with convolu-
tion operations, so that the spatial priority are defined to easy
model training [42], [43], [44], [45]. The other way is cascad-
ing the convolution operations with self-attention operations
in/across transformer blocks in serial fashions [33], [46], [47].
The cross-covariance image transformer (XCiT) [48] combined
the accuracy of transformers with the scalability of convolution
architectures by cascading local path interactions with cross-
covariance attentions in each layer. In a different way, Conformer
defines the first dual network structure which fuses features in an
interactive fashion. Such a structure not only naturally inherits
the structure advantages of both CNN and transformers but also
retains the representation capability of local features and global
representations to the maximum extent.

Transformer-Based Detectors. These detectors incorporated
long-range semantic dependency in feature representation and
improved the discrimination capability on objects of small sizes,
irregular layouts and clutter backgrounds. DETR [12] used the
transformer encoder-decoder architecture for detection, which
extracts the feature dependency between objects and captures the
global context in the whole image. ViDT [49] and Deformable
DETR [36] introduced the reconfigured transformer decoder
to collect feature dependency in multiple scales, which bene-
fits detecting small objects. Anchor DETR [50], Conditional
DETR [51] and SMCA DETR [52] improved DETR by intro-
ducing spatial priors, which reduced the representation ambi-
guity and improved the detection efficiency. YOLOS [53] was
designed not to be yet another high-performance object detector,
but to unveil the versatility and transferability of transformer
from image recognition to object detection.

Transformer-based detectors have utilized the long-range fea-
ture dependency provided by the self-/cross-attention mecha-
nism of the transformer. However, they unfortunately missed
local feature details caused by the coarse-grained image patch
inputs, which would be solved by introducing the Conformer
network structure.

III. CONFORMER NETWORK

A. Motivation

In the past forty decades, the fundamental question of “where
visual processing begins” or “what are the primitives of visual
representation” has been extensively explored in the area of
cognitive science [54], [55]. Conventional cognitive models are
mostly “local-first”: detecting local features (such as oriented
line segments) first and then integrating them, typically using
attention, to build objects. The global-first approach claims that
topological invariants, which constitute a formal description of
global, Gestalt-like operations, are the most primitive ones and
are extracted at the very beginning of visual processing. After
years debate, however, the question remains unanswered.

In the computer vision area, local features and global rep-
resentations are important counterparts. Local features [56],
[57], [58], which are compact vector representations defined
within small pixel neighborhoods, have been the building blocks
of modern computer vision algorithms. Global representations
include, but not limited to, contour representations, shape de-
scriptors, and object typologies at long distance [59]. In the
deep learning era, CNNs collects local features in a hierarchical
manner via convolutional operations and retains the local cues as
feature maps. Vision transformer is believed to aggregate global
representations among the compressed patch tokens in a soft
fashion by cascaded self-attention modules.

To take both advantages of local features and global repre-
sentations, we design the dual Conformer structure, Fig. 2(c).
Within Conformer, the global context information from the
transformer branch is consecutively fed to CNN feature maps,
to reinforce their global perception capability. Similarly, local
features from the CNN branch are progressively fed back to
patch tokens, to enrich the local details. In this way, Conformer
implements feature representations which are either/both global-
first or/and local-first, providing a computational mechanism to
investigate the fundamental problem of “where visual processing
begins”.

B. Network Architecture

As shown in Fig. 2, Conformer is composed of a stem module,
dual CNN-transformer branches, multiple FCUs to bridge the
dual branches, and two classifiers. The stem module, which
is a 7×7 convolution with stride 2 followed by a 3×3 max
pooling with stride 2, is used to extract local features (e.g.,
edge and texture information), which are then fed to the dual
network branches. The CNN branch and transformer branch are
composed of N (e.g., 12) cascaded convolution and transformer
units, respectively, Table I. With a concurrent structure, the local
details and global context are preserved to the maximum extent.

FCU is defined as a bridge module to fuse local features
from the CNN branch with global representations from the
transformer branch, Fig. 2(b). FCU is applied from the second
block as the initialized features of the two branches are same.
Along the branches, FCU progressively fuses feature maps and
patch tokens in an interactive fashion. At the last stage of the
CNN branch, all the features are pooled and fed to one classifier.
At the last stage of the transformer branch, the class token is
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Fig. 2. Conformer network architecture. (a) Up-sampling and down-sampling modules for spatial alignment of feature maps and patch tokens in the Feature
Coupling Unit (FCU). (b) Implementation details of the CNN block, the transformer block, and the FCU. (c) Thumbnail of the Conformer network with the dual
architecture.

TABLE I
ARCHITECTURE CONFIGURATION OF CONFORMER VARIANTS

taken out and fed to the other classifier. The scores of the two
classifiers are summarized as the classification results.

During training, we use two cross-entropy losses to separately
supervise the two classifiers. The weights of the loss functions
are empirically set to the same. During inference, the outputs
of the two classifiers are simply summarized as the prediction
results.

CNN Branch. As shown in Fig. 2(b), the CNN branch adopts
a feature pyramid structure, where the feature map resolution
decreases and the feature channel number increases when net-
work goes deep. Each convolution block is composed of nc (set
to 2 by default) bottlenecks. Denote the feature map of the c-th
channel and the l-th layer as X l

c, the forward process of l-th
block in the CNN branch is formulated as:

X̃ l
c1

= Conv3×3(Conv1×1(X
l
c)), (1)

X̂ l
c1

= Conv1×1(X̃
l
c1
)) +X l

c, (2)

X̃ l
c2

= Conv1×1(X̂
l
c), (3)

X̂ l
c2

= FCU(X̃ l
c2
, X l+1

t ), (4)

X l+1
c = Conv1×1(Conv3×3(X̂

l
c2
)) + X̂ l

c1
, (5)

where Convk×k denotes a convolutional unit. Each convolu-
tional unit is composed of a convolution layer with convolutional
kernel sizek, an ReLU activation layer and a batch normalization
(BN) layer [19]. X l+1

t is the output of l-th block from the
transformer branch.

Transformer Branch. Following ViT [8], this branch first
performs tokenization and then cascades N transformer blocks.
For tokenization, we compress the feature maps generated by
the stem module into 14×14 patch tokens without overlap,
by a linear projection layer, which is a 4×4 convolution with
stride 4. A class token is then pretended to the patch tokens
for classification. As shown in Fig. 2(b), given the input patch
tokens X l

t , the forward process of l-th block in the transformer
branch can be formulated as:

X̃ l
t = FCU(X l

t , X̃
l
c1
), (6)

X̂ l
t = ATT(LN(X̃ l

t)) + X̃ l
t , (7)

X l+1
t = MLP(LN(X̂ l

t)) + X̂ l
t , (8)

Authorized licensed use limited to: University of Chinese Academy of SciencesCAS. Downloaded on April 12,2024 at 13:45:31 UTC from IEEE Xplore.  Restrictions apply. 



9458 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 8, AUGUST 2023

where ATT, LN, MLP respectively denote the multi-head self-
attention, layer normalization [19] and multilayer perceptron.
Considering that X̃ l

c1
from (2) encodes both local features and

spatial location information because of the 3× 3 convolution
layer [60], the positional embeddings are no longer required.
This facilities increasing image resolution for downstream vi-
sion tasks.

C. Feature Coupling Unit

Denote X̃ l
c1

∈ RN×Cc×H×W (defined in (2)) the CNN feature
maps andX l

t ∈ RN×E×Ct (defined in (8)) the transformer patch
tokens. The FCU is defined to align and fuse features X̃ l

c1
and

X l
t , Fig. 5.
Spatial Alignment. When feeding the CNN feature maps

(X̃ l
c1

) to the transformer branch, FCU defines a linear layer
Wct ∈ RCc×Ct to align the channel numbers of X̃ l

c1
and X l

t .
It then leverages a down-sampling layer and a reshaping layer
to align the spatial resolutions of X̃ l

c1
and X l

t and a LayerNorm
layer to regularize the feature distribution ofX l

t . The regularized
CNN features are denoted as X̃ l

c1t
∈ RN×E×Ct . This procedure

is formulated as

X̃ l
c1t

= LN(Reshaping(Downsampling(WctX̃
l
c1
))). (9)

When feeding the transformer patch tokens X l+1
t ∈

RN×E×Ct to the CNN branch, FCU leverages a linear layer
Wtc ∈ RCt×Cc to align the feature channel numbers of X l+1

t

and X̃ l
c2

. It then uses a reshaping layer and an up-sampling layer
to align the spatial resolutions of X̃ l

c2
and a BatchNorm layer to

regularize the feature distribution of X̃ l
c2

. The regularized repre-
sentation is denoted as X l+1

tc ∈ RN×Cc×H×W . This procedure
is formulated as:

X l+1
tc = BN(Upsampling(Reshaping(WtcX

l+1
t ))). (10)

For the Downsampling operation in (9), we compare ‘Max-
pooling’, ‘Avgpooling’, ‘Convolution’ and ‘Attention’. For ‘At-
tention’, we utilize the cross-attention layer to align the spatial
resolutions of X̃ l

c1
(after Reshaping) and X l

t :

X̃ l
c1t

= Softmax

(
(X l

tWq)(X̃
l
c1t

Wk)
T

√
Ct

)
(X̃ l

c1t
Wv),

where Wq,Wk,Wv ∈ RCt×Ct are learned linear transforma-
tions which map the input X l

t to queries Q, and X̃ l
c1t

to keys K
and values V , respectively.

Similarly, for the Upsampling operation in (10), ‘Interpola-
tion’ and ‘Attention’ are compared. For ‘Attention’, we let the
X̃ l

c2
be the queries Q, and X l+1

tc (after Reshaping) be the keys
K and values V :

X l+1
tc = Softmax

(
(X̃ l

c2
Wq)(X

l+1
tc Wk)

T

√
Ct

)
(X l+1

tc Wv).

The ablation studies suggest that the simple average-pooling
and nearest neighbor interpolation are more appropriate for the
FCU.

Orthogonal Feature Fusion. After aligning the features, how
to fuse X̃ l

c1t
with X l

t and couple X l+1
tc with X̃ l

c2
remains to

be elaborated. Beyond the off-the-shelf adding or concatenating
strategies, we propose the “coupling” operation to maximize
the complementary and orthogonality of features. Specifically,
when coupling X l

c1t
with X̃ l

t , taking the X l
t/|X l

t | as unit vec-
tor et, we project X̃ l

c1t
onto X l

t and obtain the codirectional
component,

X̃c1t
l
‖et =

X̃ l
c1t

·X l
t

|X l
t |

· et, (11)

and the orthogonal component,

X̃c1t
l
⊥et

= X̃c1t
l − X̃c1t

l
‖et , (12)

where ‖ and ⊥ respectively denote “parallel” and “vertical”.
We re-scale X̃c1t

l
‖t and X̃c1t

l
⊥et

in a learnable fashion and
update (6) as

X̃ l
t = α‖et × X̃c1t

l
‖et + α⊥et × X̃c1t

l
⊥et

+X l
t , (13)

where α‖et and α⊥et are two diagonal matrices. For instance,
α‖et is defined as

α‖et =

⎡
⎢⎢⎣
α1 · · · 0
...

. . .
...

0 · · · αCt

⎤
⎥⎥⎦. (14)

Similarly, when coupling X l+1
tc with X̃ l

c2
, taking the X̃ l

c2
/|X̃ l

c2
|

as a unit vector ec, we update (4) and have the coupled feature
X̂ l

c2
, as

X̂ l
c2

= α‖ec ×X l+1
tc ‖ec + α⊥ec ×X l+1

tc ⊥ec
+ X̃ l

c2
. (15)

Considering distribution difference between the CNN branch
and the transformer branch, there exist feature/semantic gaps
between feature maps and patch tokens in cascaded network
branches. Thereby, FCU is applied in each block (except the
first block) to progressively fill the feature/semantic gaps.

D. Analysis

Structure Analysis. By considering the FCU as a short con-
nection, we can abstract the dual structure to a serial residual
structure, Fig. 3(a). With different residual connection units,
Conformer implements different combinations of bottlenecks
(as in ResNet, Fig. 3(b)) and transformer blocks (as in ViT,
Fig. 3(d)), which implies that it combines the structural advan-
tages of CNNs and vision transformers. Furthermore, it achieves
various permutations of bottlenecks and transformer blocks at
different depths, including but not limited to Fig. 3(c) and (e).
This greatly enhances the representation capacity of the network.

Feature Analysis. We visualize the feature maps, class activa-
tion maps and attention maps in in Figs. 1 and 4. Compared with
ResNet [4], with the coupled global representations, the CNN
branch in Conformer tends to activate full object extent regions
rather than object parts, which suggests long-distance feature
dependencies Figs. 1(f) and 4(a). Thanks to the fine-detailed
local features progressively provided by the CNN branch, the
patch tokens of the transformer branch retain detailed local
features (Fig. 1(d) and (h)), which are deteriorated by the vision
transformers [8], [10] (Fig. 1(c) and (g)). Furthermore, the
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Fig. 3. Network structure analysis.Cn andTr respectively denote a bottleneck
and a transformer block. (a) The dual structure can be considered as a special
serial case of the residual structure. (b) The CNN (e.g., ResNet); (c) A special
hybrid structure where the transformer block is embedded to bottlenecks. (d)
The vision transformers (e.g., ViT); (e) A special case where the bottlenecks are
embedded to the transformer blocks.

Fig. 4. Visualization of feature activation by CNN (ResNet-101) [4], vision
transformer (DeiT-S) [10], and our proposed Conformer. (a) Class activation
maps in ResNet-101 and the CNN branch of Conformer-S by using the CAM
method [61]. (b) Attention maps in DeiT-S and the transformer branch of
Conformer-S by using the Attention Rollout method [62]. This figure is best
viewed in color.

attention area in Fig. 4(b) is more complete while the background
is significantly suppressed, implying higher discriminative ca-
pacity of learned feature representations.

IV. CONFORMERDET

Following the backbone network, Fig. 5, the detector head
(ConformerDet) has a dual structure with two network branches.
Along the transformer branch, ConformerDet learns to model
the long-range semantic dependency, which is coupled with the

local features extracted by the CNN branch to detect objects.
ConformerDet is composed of multi-stage proposal prediction
and proposal refinement modules.

A. Flowchart

The long-range semantic dependency from the vision trans-
former benefits extracting representation related to full object
extent [53], [63], which enables it to cover objects with learnable
sparse proposals. The sparse proposals are learned by tokens
(feature vectors) embedded to the vision transformer.

Proposal Token Embedding. We propose to represent each
object region using a feature vector ei∈R1×C (termed pro-
posal token), where i indexes the proposal and C the feature
dimension. For each image, we randomly initialize N sparse
proposal tokens, which are expected to cover all objects in
the image. These proposal tokens construct a token set E =
{ei}Ni=1∈RN×C , which is embed to the transformer to learn
representation for object localization and classification, Fig. 5.
Specially, the token set E is appended to the inputs (image
patches T) of the vision transformer to form a new set of
embeddings L = {T,E}∈R(M+N)×C , where M denotes the
number of image patches.

Proposal Prediction. The proposal tokens embedded in trans-
former are trained to predict object proposals, Fig. 5. Each object
proposal consists of a classification score si and a bounding box
bi = {xi, yi, wi, hi} which respectively denote the normalized
center coordinates, object width and object height. The bounding
box bi for proposal token ei is initialized to cover the whole
input image. All the initial bounding boxes construct a box set
B = {bi}Ni=1 ∈ RN×4. Each proposal token ei predicts a classi-
fication score si by passing a linear layer. Using ei as input, three
perception layers equipped with ReLU activation functions are
used to predict bounding box offsets δbi = {δxi, δyi, δwi, δhi}.
Based on the offsets δbi, a bounding box bi is updated to
b̂i = {x̂i, ŷi, ŵi, ĥi} where x̂i = xi + wiδxi, ŷi = yi + hiδyi,
ŵi = wie

δwi , and ĥi = hie
δhi . All predicted bounding boxes

are updated to a box set B̂ = {b̂i}Ni=1∈RN×4. Given multiple
proposal tokens, e.g., a token set E, we construct a proposal set
R = {b̂i, si}Ni=1 = {ri}Ni=1∈RN×(4+D), where D denotes the
object category number.

Proposal Refinement As shown in Fig. 5, multi-stage proposal
refinement modules incorporate object proposal prediction and
feature coupling in a learnable framework for iterative optimiza-
tion. When performing proposal prediction, tokens are used to
update the object proposals, which guide the extraction of local
features fi. In the feature coupling procedure, the local feature
fi are enhanced and fused by the corresponding token ei and
obtain the updated proposal token êi. The proposal prediction
and feature coupling procedures are performed alternatively and
iteratively, so that the object features are progressively enhanced
and the object locations are gradually refined.

B. Proposal Feature Coupling

Given the predicted bounding box set B̂, an RoIAlign
module [64] is employed to extract the CNN local fea-
tures F = {fi}Ni=1∈RN×C×S×S , where S = 14 is the features
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Fig. 5. ConformerDet flowchart. (a) Augmented cross-attention unit (ACU). (b) ConformerDet head. (c) The Conformer backbone. Feature maps and proposal
tokens from Conformer are fed to the detector head (ConformerDet), which leverages augmented cross-attention units (ACUs) to couple token representations with
local CNN features to enhance the discriminability and localization accuracy.

height/width. The proposal tokens E incorporating long-range
semantic dependency are used to enhance CNN local features
using the attention mechanism, Fig. 5(a). Different from the
backbone network which processes a whole image, the detector
requires to handle multiple proposal regions. Compared with the
add operation, the attention mechanism facilities the alignment
of proposal regions with ground-truth objects.

Cross-Attention. The multi-head cross-attention [12] is a
natural mechanism to perform feature coupling. Given query
embeddings Query ∈ RN×C to be enhanced and feature maps
Key,Value ∈ RHW×C to be coupled, where H and W are
the height and width of the feature maps. The cross-attention
operation is defined as

Q̂ = Softmax
(
(QWq)(KWk)

�/
√
C/h

)
(VWv), (16)

where Q̂ is the enhanced query embeddings. Wq , Wk and
Wv respectively denote parameters of the linear transformation
layers. � is a transpose operator and h the number of attention
heads. Accordingly, given a proposal token ei ∈ R1×C and
its corresponding CNN local features fi ∈ RS2×C , the feature
coupling on detector head is defined as

f̂i = Softmax
(
(fiWq)(eiWk)

�/
√

C/h
)
(eiWv), (17)

where f̂i denotes the enhanced feature maps. Ai =
Softmax((fiWq)(eiWk)

�/
√
C/h) ∈ RS2×1 is the attention

matrix reflecting the correlation between the fi and ei. (17)
defines a feature coupling procedure, which leverages each
feature vector within the feature maps to query a proposal token
so that the long-range semantic dependency can be embedded
to CNN local features.

Augmented Cross-Attention. Considering that the tokens are
sparse while the CNN local features are dense, a token augmen-
tation procedure is proposed to increase the spatial versatility
of sparse tokens so that local features couple with the optimal
tokens. In specific, we propose to argument each proposal token
to multiple (I) proposal tokens (eφi

∈ RI×C) using a linear
layer, as

eφi
= F(ei). (18)

By augmenting ei to eφi
, feature coupling defined by (17) is

rewritten as

f̂i = Softmax
(
(fiWq)(eφi

Wk)
�/
√
C/h

)
(eφi

Wv), (19)

and the attention matrix Ai is augmented to multiple attention
matrixs Aφi

∈ RS2×I , each of which corresponds to a spatial
location. After feature coupling, a convolutional layer is carried
out to convert the feature maps f̂i to a feature vector for further
fusing with proposal token ei, Fig. 5(a).

C. Detector Loss

Following transformer-based detectors [12], [53], [73], we
utilize the bipartite matching strategy to assign predicted pro-
posals R to ground-truth objects. The ground-truth objects are
denoted as G = {gk, yk}Kk=1, where gk and yk respectively
denote the bounding box and the one-hot label of the k-th
object.K denotes the category number of the objects. A bipartite
matching cost is minimized with the Hungarian algorithm [12],
which guarantees that ground-truth objects are optimally as-
signed to proposals. The proposals that do not assigned to any
object categorized as negatives. The proposal prediction loss
with respect to a matched ground-truth object is defined as the
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TABLE II
TOP-1 ACCURACY FOR IMAGE CLASSIFICATION ON THE IMAGENET

VALIDATION SET. LATENCY AND PEAK GPU MEMORY (#MEMS) ARE

MEASURED WITH BATCH SIZE 16 USING THE TIMM CODEBASE [65]

weighted summation of the classification loss Lcls(si, yk) (the
focal loss [74]), the object localization loss LL1(b̂i, gk) [74] and
the GIoU loss Lgiou(b̂i, gk) [75], as

L+ = λ1Lcls(si, yk) + λ2LL1(b̂i, gk) + λ3Lgiou(b̂i, gk),
(20)

where λ1, λ2 and λ3 are regularization factors, which are respec-
tively set to 2, 5 and 2. The negative proposals only calculate
classification loss, as L− = λ1Lcls(si, yk). The overall loss for
detector training is defined as L = L+ + L−.

V. EXPERIMENTS

A. Image Classification

Conformer is trained on the ImageNet-1k [76] training set
with 1.3M images and tested upon the validation set. The Top-1
accuracy is reported in Table II. The model is trained for 300
epochs with the AdamW optimizer [77], batchsize 1024 and
weight decay 0.05. The initial learning rate is set to 0.001
and decay in a cosine schedule. For higher performance, we
follow the data augmentation and regularization techniques in
DeiT [10].

TABLE III
PERFORMANCE UNDER PARAMETER PROPORTIONS

1) Performance: Under similar parameters and computa-
tional budgets, Table II, Conformers outperform both CNN and
vision transformers. For example, Conformer-S (with 37.7M
parameters and 10.7G MACs) respectively outperforms ResNet-
152 (with 60.2M parameters and 11.6G MACs) by 5.3% (83.6%
versus. 78.3%) and DeiT-B (with 86.6M parameters and 17.6G
MACs) by 1.8% (83.6% versus. 81.8%). Conformer-B, with
comparable parameters and moderate MAC cost, outperforms
DeiT-B by 2.3% (84.1% versus. 81.8%). Particularly, under
comparable parameters and MACs, Conformer-B outperforms
Swin-B by 0.6% (84.1% versus. 83.5%), which is a significant
margin demonstrating importance of merging features from two
architectures.

2) Ablation Studies: Number of Parameters. The parameters
of Conformer are the summation of the CNN and transformer
parameters while the parameters of FCU is negligible. The
parameter proportion of the two branches is a hyper-parameter
to be experimentally determined. In Table III, we evaluate per-
formance of the two branches under different parameter settings.
For the CNN branch, we tune the parameters by changing the
channels and the number of bottlenecks, which respectively
control the width and depth of CNN. For the transformer branch,
we tune the parameters by changing the head numbers and
embedding dimensions. From Table III, one can see that the
accuracy is improved by increasing either parameters of the
CNN or the transformer branch. More CNN parameters bring
greater improvement while the computational cost overhead is
lower. Empirically, the parameter proportion of the transformer
and CNN branches fall into [1:1, 5:1]. While small Conformer
models prefer a small parameter proportion 1:1, large Conformer
models tend to use a large parameter proportion.

Feature Coupling Units. In Table IV, we evaluate the numbers
of FCUs and the feature fusion strategies. Simply adding the
CNN branch to the transformer branch (i.e., DeiT-S) boosts the
performance from 79.8% to 80.8%. When the feature fusion is
activated, Conformer enjoys a significant gain (83.4% versus.
80.8%), indicating the potential of coupling features from two
branches. When updating the simple adding operation in FCUs
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TABLE IV
ABLATION STUDY OF STEP-BY-STEP CONSTRUCTION OF CONFORM FROM VIT

TABLE V
COMPARISON OF HYBRID STRUCTURES. DEIT-S/32 MEANS THE MODEL WITH

PATCH SIZE 32×32 [10]

TABLE VI
COMPARISON OF POSITIONAL EMBEDDINGS STRATEGIES

to orthogonal feature fusion, the performance boosts from 83.4%
to 83.6%.

Dual Structure. Conformer is a dual model, which is es-
sentially different from the serial hybrid ViT (CNN → Trans-
former) [8]. In Table V, ResNet-26/50d & DeiT-S is a hybrid
model which consists of ResNet-26/50d [4] and DeiT-S [10],
where DeiT-S construct tokens upon the feature maps extracted
by ResNet-26/50d. With a comparable computational cost over-
head, Conformer-S/32 outperforms the serial hybrid model,
which validates the advantage of the dual structure. Furthermore,
such a dual structure is compatible to both CNN-based and
transformer-based down-stream tasks (i.e., object detection or
instance segmentation). In contrast, the serial hybrid model,
without specialized, is only compatible to transformer-based
down-stream tasks.

Positional Embeddings. Considering that the CNN branch
encodes both local features and spatial location information,
the positional embeddings are assumed no longer required for
Conformer. In Table VI, when the positional embedding is
removed, the accuracy of DeiT-S decreases 2.4%, while that
of Conformer-S decreases only 0.1%.

TABLE VII
COMPARISON OF DOWN/UPSAMPLING STRATEGIES

TABLE VIII
PERFORMANCE COMPARISON OF ENSEMBLE MODELS

TABLE IX
PERFORMANCE OF CONFORMER SUB-STRUCTURES FIG. 3

Sampling Strategies. In FCU, to make CNN-based feature
maps coupling with transformer-based patch tokens, up/down-
sampling operations are used to spatially align them. In Ta-
ble VII, we compare different up/down-sampling strategies in-
cluding Maxpooling, Avgpooling, convolution and attention-
based sampling. Compared with Max/Avgpooling sampling,
convolution and attention-based sampling methods that use more
parameters and have computational cost achieve comparable
accuracies.

Comparison With Ensemble Models. Conformer is compared
with the ensemble models combining the outputs of CNN and
transformer, Table VIII. For a fair comparison, we use the same
data augmentation and regularization strategies and the same
epoch number (300) to train ResNet-101 [4], and combine it
with the DeiT-S [10] model to construct an ensemble model.
The accuracies of the CNN branch, the transformer branch, and
the Conformer-S respectively reach 83.3%, 83.1%, and 83.6%.
In contrast, the ensemble model (DeiT-S+ResNet-101) archives
81.8%, which is 1.8% lower than that of Conformer-S (83.6%),
although it uses more parameters and MACs.

3) Analysis: Structure Analysis. As the analyzed in Sec-
tion III.D, by considering FCUs as short connections the dual
structure of Conformer is equivalent to a serial structure. Under
different residual connections, Conformer can degenerate to
various sub-structures. We sample several sub-structures and
report the corresponding performance in Table IX. One can see
that the residual structure outperforms other sub-structures.

Feature Analysis. Figs. 1 and 4 demonstrate that Conformer
is effective to extract local features and global representa-
tions, which facilitates enhancing the localization capability of
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TABLE X
PERFORMANCE OF WEAKLY SUPERVISED OBJECT LOCALIZATION ON

CUB-200-2011 TEST SET

Fig. 6. Generalization capability. (a) Comparison of rotation invariance. The
compared models are trained under the same data augmentation settings and
directly evaluated on rotated images without model fintuning. (b) Comparison
of scale invariance. The models are trained on images with the resolution of
224×224, and tested on different image resolutions without model finetuning.

models. Weakly-supervised object localization (WSOL), which
solely uses image-level category information as supervision sig-
nals but requires to learn complete object extent, is a touchstone
for the localization capability of representation models. The
quantitative experiment is conducted on the CUB-200-2011
dataset [83] and the results are reported in Table X. It can be
seen that the localization performance of TS-CAM [37] with
Conformer-S significantly outperforms those of CNN-based
RCAM [78] and transformer-based DeiT-S, which further vali-
dates that Conformer is competent to learn long-range semantic
dependency facilitating object localization.

Generalization Capability. To verify Conformer’s generaliza-
tion capability in terms of object orientations and scales, we
rotate test images by 0◦, 60◦, 120◦, 180◦, 240◦ and 300◦ and
evaluate the performance of models trained under same data
augmentation settings. As shown in Fig. 6(a), all models report
comparable performance for images without rotation (0◦). For
the rotated test images, the performance of ResNet-101 drops
significantly. In contrast, Conformer-S reports higher perfor-
mance, which implies stronger rotation invariance. In Fig. 6(b),
we compare the scale adaptation ability of Conformer with
those of vision transformers (DeiT-S) and CNN (ResNet). We
interpolate the positional embeddings of DeiT-S to adapt it to
input images of different resolutions during inference. When
the size of input images reduces from 224 to 112, DeiT-S’s
performance drops by 25% and that of ResNet-50/152 drops
by 15%. In contrast, the performance of Conformer drops only
by 10%, demonstrating higher scale generalization capability of
the learned feature representations.

Robustness Evaluation. In Table XI, we compare Conformer
with ResNet and DeiT on four ImageNet validation sets,

TABLE XI
ROBUSTNESS EVALUATION ON IMAGENET VARIANTS

Fig. 7. Evaluation of hyper-parameters. (a) Augmented token number (I). (b)
Resolution (S) of local features. (c) Stage number (L). (d) Token number (N ).
The numbers on the curves denote GFLOPs and model parameters.

i.e., ImageNetV2 [79], ImageNet-Adversarial [80], ImageNet-
Rendition [81] and ImageNet-Sketch [82]. We train the models
on the original ImageNet and test them on these validation sets.
One can see that Conformer models consistently and signifi-
cantly outperform ResNet and DeiT, indicating the superiority
and robustness.

B. Object Detection

1) Experimental Settings: The MS COCO benchmark [90]
has 80 object categories and contains 118k images for training,
5k images for validation and 20k images for testing. On the MS
COCO benchmark, we use the standard AP metrics for object
detection. All models are trained on the COCO train2017 split
and evaluated on the val2017/test2017 split.

For MS COCO, data augmentation includes multi-scale vari-
ations in range of [480, 800] with stride 32 and random image
crop [12]. The detectors are trained with the AdamW optimizer
with a batch size 16 on 16 Tesla V100 GPUs. The detectors are
trained with 36 epochs in total and learning rate is initialized
as 2.5× 10−5, which is reduced by a magnitude after the 27th
and 33th epochs. Following [73], we plug a self-attention module
before each feature coupling module to further enhance proposal
tokens.

2) Performance: In Table XII, ConformerDet is compared
with the state-of-the-art detectors on the COCO validation split.
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TABLE XII
COMPARISON WITH THE STATE-OF-THE-ART OBJECT DETECTORS ON COCO 2017 VALIDATION SPLIT

TABLE XIII
ABLATION STUDIES OF CONFORMERDET MODULES

With the Conformer-S backbone, ConformerDet outperforms
Sparse R-CNN [73] (which also uses learnable sparse propos-
als) by 1.7% (50.5% versus 48.8%). This not only validates
the plausibility of fusing CNN local features with transformer
representation but also the iterative optimization strategy with
proposal prediction and object feature enhancement.

ConformerDet outperforms ViDT [49] by 1.3% AP (50.5%
versus 49.2%), despite it uses a larger backbone (Swin-B)
pre-trained on ImageNet-22K [76]. On small objects (APS),
ConformerDet significantly outperforms ViDT by 3.0% (33.6%
versus 30.6%). This validates that it can leverage the details
of CNN local features to improve the discriminability, as well
as the long-range feature dependency to represent objects. As
a transformer-based detector, ConformerDet is comparable to,
if not better than, many transformer-based detectors including
Deformable DETR [49], Conditional DETR [51] and ViDT [49],
and powerful CNN-based detectors like ATSS [87] and Cascade
Mask R-CNN [88].

In Table XIV, we compare ConformerDet with state-of-the-art
detectors on the COCO test split. Equipped with Conformer-
S and Conformer-B backbones, ConformerDet respectively

achieves 50.6% and 51.8% AP. With multi-scale testing, Con-
formerDet achieves 52.9% AP, which is on par with those of the
state-of-the-art detectors.

3) Ablation Studies: Conformer-S is selected as the back-
bone network. The training schedule is 12 epochs, the short side
of input image is set to 800 pixels and the number of proposal
tokens (N ) is set to 100.

Augmented Cross-Attention (ACU). In Fig. 7(a), we evaluate
the augmented token number (I). For I = 1 (without token
augmentation), ConformerDet reports a very low detection per-
formance (∼32% AP). When using a proper number (I = 64)
of augmented tokens, ConformerDet achieves the best AP by
43.8%. The large performance improvement validates the effec-
tiveness of performing token augmentation (Section IV.B) when
fusing the sparse tokens with dense CNN features.

Resolution of Local Features. As described in Section IV.B,
the resolution (S) of CNN local features is related to the grain-
iness of object representation. ConformerDet achieves the best
performance 43.8% at S = 14, Fig. 7(b).

Number of Refinement Stages. In Section IV.A, iterative PP
and ACU procedures progressively refine proposals in a learn-
able framework. In Fig. 7(c), the detection performance in-
creases with the number (L) of refinement stages. When L = 6,
the performance reaches the best.

Number of Proposal Tokens. This hyper-parameter has a sig-
nificant impact on the detection performance. In Fig. 7(d), large
token numbers imply higher performance, at larger computa-
tional and parameter costs. To balance the detection performance
and computational cost, the numbers of proposal tokens are set
to the range [100, 300]. The token number was set to 300.
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TABLE XIV
COMPARISON WITH THE STATE-OF-THE-ART OBJECT DETECTORS ON COCO 2017 TEST SPLIT

Fig. 8. Object detection responses (in red boxes). Compared with the transformer-based detector (DETR), ConformerDet activates more accurate regions due to
the fine-detailed feature maps. Compared with the CNN-based detector (Faster R-CNN), ConformerDet can leverage the long-range semantic dependency to better
activate objects from the same categories. This figure is best viewed in color.

Modules. In Table XIII, ablation studies validate the com-
posed modules of ConformerDet, where “PP” denotes single-
stage proposal prediction, “RoIAlign” predicted proposals with
CNN features, “PR” single-stage proposal prediction with re-
finement, and “ConformerDet” the complete ConformerDet de-
tector with multi-stage proposal refinement. Both the proposal
prediction and proposal refinement modules significantly im-
prove performance.

4) Visualization Analysis: In Fig. 8, the detection responses
by three methods [12], [94] are compared. ConformerDet uni-
formly activate full object extent, as well as highlighting all
object regions by leveraging the long-range semantic depen-
dency. Compared with the transformer-based detector (DETR),
ConformerDet activates more accurate regions due to the fine-
detailed feature maps. Compared with the CNN-based detector

(Faster R-CNN), ConformerDet better activates objects, vali-
dating that it captures the long-range semantic dependencies
between objects of same categories.

VI. CONCLUSION

We propose Conformer, the First dual backbone to fuse CNN
with vision transformer. Within Conformer, we leverage the con-
volution operators to extract local features and the self-attention
mechanisms to capture global representations. We design the
feature coupling unit to fuse local features and global repre-
sentations, enhancing the ability of visual representations in
an interactive fashion. Experiments show that Conformer, with
comparable parameters and computation budgets, outperforms
both CNNs and vision transformers, in striking contrast with
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the state-of-the-arts. By further coupling the CNN features with
global representations on the detector head, we proposed the
ConformerDet approach, which outperformed the CNN and
transformer counterparts with significant margins. The effective-
ness of Conformer on image recognition and object detection
tasks demonstrated the importance of merging features from
CNN and transformer architectures.
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