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Abstract—Few-shot class-incremental learning (FSCIL) is challenged by catastrophically forgetting old classes and over-fitting new
classes. Revealed by our analyses, the problems are caused by feature distribution crumbling, which leads to class confusion when
continuously embedding few samples to a fixed feature space. In this study, we propose a Dynamic Support Network (DSN), which
refers to an adaptively updating network with compressive node expansion to “support” the feature space. In each training session, DSN
tentatively expands network nodes to enlarge feature representation capacity for incremental classes. It then dynamically compresses
the expanded network by node self-activation to pursue compact feature representation, which alleviates over-fitting. Simultaneously,
DSN selectively recalls old class distributions during incremental learning to support feature distributions and avoid confusion between
classes. DSN with compressive node expansion and class distribution recalling provides a systematic solution for the problems of
catastrophic forgetting and overfitting. Experiments on CUB, CIFAR-100, and miniImage datasets show that DSN significantly improves
upon the baseline approach, achieving new state-of-the-arts. The code is publicly available.

Index Terms—Few-shot Learning, Incremental Learning, Support Network, Compressive Network Expansion, Distribution Recalling.

F

1 INTRODUCTION

G REAT progress in visual recognition has been made
over the past few years. This can be broadly attributed

to advanced learning mechanisms and large-scale datasets
with adequate supervision. However, machine learning
mechanisms remain incomparable with cognitive learning,
which not only constructs high-precision recognition capa-
bility upon few annotated samples but also can continually
generalize such capability to novel things [1].

Few-shot class incremental learning (FSCIL) is an emerg-
ing machine learning paradigm inspired by cognitive learn-
ing [2]. Given base classes with sufficient training data and
novel classes of few supervisions, FSCIL trains a represen-
tation model using old classes and then continually adapts
the model to new classes. Both old classes and new classes
need to be recognized during inference. However, FSCIL
faces challenges which are beyond conventional learning
paradigms. On the one hand, fine-tuning the model with
new classes disturbs old-class feature distributions, which
causes “catastrophic forgetting”. On the other hand, train-
ing with only a few samples from new classes aggregates
model bias toward old classes, which causes distribution
crumbling and model over-fitting, Fig. 1.

Recent study managed to reduce model complexity and
alleviated the over-fitting issue by squeezing network pa-
rameters [3]. Knowledge distillation [4] and evolving classi-
fiers [5] facilitated memorizing old classes when generaliz-
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Fig. 1. The forgetting and over-fitting issues in FSCIL.

ing models to new. The neural gas method [2] regularized
feature space topology which in turn attenuated forgetting
and resolved the problem of over-fitting, simultaneously.
However, the problems caused by feature distribution crum-
bling (Fig. 2a) have been largely ignored. This oversight
substantially hinders model scalability when continuously
embedding new classes with few samples to a feature space
trained upon old classes.

In this study, we propose an adaptive yet minimally
expanded network, referred to as the dynamic support
network (DSN), to “support” feature distributions when
performing FSCIL, Fig. 2b. During incremental learning,
DSN tentatively expands network nodes to aggregate the
representation capacity for new classes. New feature rep-
resentation is then obtained by merging network outputs
before (i.e., representations learned from old classes) and
after (i.e., representations learned from new classes) node
expansion. The expanded network is then compressed with
a node self-activation mechanism to pursue compact feature
representation which not only supports class distributions
but also avoids over-fitting. Specifically, network outputs
are used to predict an indicator vector which highlights the
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Fig. 2. Dynamic support network (DSN). (a) A scale-fixed network with a feature space of limited representation capacity. Embedding examples
of new classes into the feature space causes distribution crumbling. (b) DSN refers to an adaptively updating network with compressive node
expansion. When the network is trained upon new classes, it tentatively expands network nodes to learn new class features and then compresses
the redundant nodes to provide compact feature representation. Meanwhile, the old class distribution in this feature space is recalled to regularize
incremental learning. DSN dynamically “supports” the feature space and feature distribution to avoid class confusion.

importance of network nodes. The predicted vector then up-
dates network outputs. Through iterative node activation,
DSN pursues a sparse indicator vector with minimal node
expansion. Meanwhile, DSN selectively recalls old classes
in each incremental session. To this end, it first estimates
new class distributions in the current session. In the next
session, the incremental new classes change to old classes
and a sampling procedure is performed to generate feature
vectors from old class distributions for model training. In
this manner, feature distributions are supported and thereby
avoid class confusion, Fig. 2b.

The contributions of this study include:

• We propose the dynamic support network (DSN),
which provides a feature space regularized solution
to forgetting and over-fitting observed in FSCIL.

• We design a node self-activation mechanism to pro-
duce sparse indicator vectors and pursue minimal
node expansion to alleviate over-fitting.

• We design a distribution recalling strategy, which
adaptively samples feature vectors from class distri-
butions and supports feature distribution to avoid
class confusion.

• We substantially improve FSCIL performance and
achieve new state-of-the-art performance on com-
monly used benchmarks.

2 RELATED WORKS

Few-shot Learning. Metric learning [6]–[11] trained two-
branch networks to compare the few-shot training images
with query (test) images and determine categories of the
query images. Meta learning [12]–[14] pursued faster adap-
tation of models to new categories with few training im-
ages. Data augmentation [15]–[17] generated examples of
rich transformations to enhance feature representation. As a
sophisticated data augmentation approach, distribution cal-
ibration [18] estimated few-shot sample distributions from
similar base classes.

However, when mitigated to new classes the perfor-
mance of base classes degenerate, i.e., catastrophic for-
getting. To solve, Gidaris et al. [19] introduced the few-
shot classification weight generator to comprise new and
old classes. Openmix [20] built the connection between
old classes and new classes using data augmentation. A
classification weight generator based on the attention mech-
anism [6] was proposed to retain the representation of
base classes when learning new classes. Meta-learning [21],
[22] and feature alignment methods [23] were explored to
regularize the learning procedure of new classes. Memory
networks are effective to overcome catastrophic forgetting.
LRRE [24] involved a life-long memory module, which
performs predictions by leveraging the knowledge from
past data with similar activations. The compound memory
network (CMN) [25], [26] leveraged the label independent
memory (LIM) to cache label related features and encode
the large amount of unlabeled data. The LIM mechanism
solved catastrophic forgetting by encoding all the old-class
examples with a limited number of examples.

Incremental Learning. Researches can be broadly classi-
fied as either task- or class-incremental learning (CIL) [27].
The former included rehearsal methods [28]–[32], data dis-
tillation [29], [33]–[37], and architecture configuration [38]–
[41]. Rehearsal methods recalled exemplars from a previous
session to prevent forgetting. Data distillation Regulariza-
tion [33], [37] methods introduced regularization loss func-
tions, which constrain network outputs to prevent forget-
ting. Architecture configuration methods leveraged hard at-
tention [39], prunning and pack mechanisms [38] to choose
parameters during inference. The dynamic expansion net-
work [40] used a three-step strategy with node retraining,
node expansion, and node splitting. When task IDs are
not accessible during inference, task-incremental learning
evolves to class-incremental learning [28]. The primary chal-
lenge is catastrophic forgetting, which was elaborated by
data distillation [33], [42], memory schemes [34], [43], and
transfer learning [44].
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Network growing [45]–[47] not only learned resource-
efficient neural architectures but also alleviated catastrophic
forgetting in incremental learning. Splitting Network [45]
optimized the network structure by partitioning existing
neurons to multiple off-springs. ConvexNetwork [46] con-
verted network node selection as a convex optimization
problem, which were solved by incrementally inserting a
hidden unit at a time and each time finding a linear classifier
that minimizes a weighted sum of errors. ArchitectureDes-
cent [47] defined a general framework to flexibly grow
networks, both wider and deeper, by jointly optimizing the
networks’ parameters and architectures.

Existing methods have advanced the study of class in-
cremental learning, but unfortunately ignored feature space
expansion, which cause class confusion when more and
more categories are embedded to a fixed feature space.

Few-shot Class Incremental Learning. FSCIL faces
challenges which appear beyond conventional learning
paradigms. Compared with incremental learning, it is puz-
zled by over-fitting brought about by few-shot examples.
Compared with few-shot learning, it has catastrophic for-
getting and requires to avoid overwhelming the original
feature space when adding few samples from incremental
classes. The neural gas method [2] attempted to solve this
problem by preserving feature topology. The dynamic few-
shot learning method [19] introduced a classification weight
generator to learn feature representations which general-
ized well on “unseen” categories. However, neither of the
methods systematically considers the feature distribution
support problem, which is the focus of this study.

3 PRELIMINARY

FSCIL trains a model upon base classes Cbase with sufficient
data and continually generates the model to novel classes
Cnovel with only few samples from streaming datasets
{D(t), t = 0, 1, 2, ...}, where D(t) denotes data for the t-
th incremental class set C(t). For ∀t1 6=t2 , we have C(t1) ∩
C(t2) = ∅, C(0) = CBase, and ∪tC(t) = Cnovel with t > 0. In
the t-th session, only datasetD(t) of class setC(t) is available
to train the model while all seen classes {C(0), ..., C(t)}
require to be tested. In this procedure, the old classes
{C(0), · · · , C(t−1)} cannot be forgotten while the few-shot
examples from new classes should not be overfitted.

A naive solution for FSCIL is first to train a network
with Cbase, and then fine-tune the network using data D(t)

from incremental classes C(t). For the base training session
(0-th session), each image I ∈ D(0) is fed to a network
to extract a feature vector x = f(I; θb) ∈ Rc, where f(·)
denotes the backbone network parameterized with θb. A
network layer parameterized using θo is then introduced to
project extracted feature vectors to a feature space f(x; θo).
Taking g(·) parameterized by θ(0)c as the classifier, we have
the network prediction ŷ(0) = g

(
f(x; θo); θ

(0)
c

)
. During base

model training (t=0), with image ground-truth y, the follow-
ing classification loss function can be optimized, using

arg min
θ
Lcls(ŷ(0),y; θ), (1)

where θ = {θb, θo, θc}, θc = θ
(0)
c , and Lcls = y log(ŷ(0)) is

the cross entropy loss function.
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Fig. 3. Network expansion and compression.

For incremental learning sessions (t > 0), to classify
new classes C(t), additional parameters θ(t)c are added to
the network’s classification layer. Accordingly, the network
prediction becomes ŷ(t) = g

(
f(x; θo); θc

)
, where θc =

{θ(0)c , ..., θ
(t)
c }. To avoid forgetting old classes, a knowledge

distillation method [33] is adopted to retain the parameters
learnt from old classes. The distillation loss is defined as
Ldis = ŷ(t−1) log ŷ(t), where ŷ(t−1) is the output of the
network trained in the (t − 1)-th session. With knowledge
distillation, FSCIL’s objective function is defined as

arg min
θ
Linc(ŷ(t),y; θ)

= Lcls(ŷ(t),y; θ) + λ1Ldis(ŷ(t), ŷ(t−1); θ),
(2)

where θ = {θo, θc}. θc = {θ(0)c , ..., θ
(t)
c }. λ1 is a regulariza-

tion factor.
With knowledge distillation, the above approach reduces

the catastrophic forgetting, but remains challenged by the
over-fitting issue when only few training examples are
available. However, the few samples from new classes make
it hard to retain the old class distributions, Fig 2(a), which
would be solved by DSN introduced below.

4 DYNAMIC SUPPORT NETWORK

DSN refers to an adapatively expanded network, which
“supports” the feature space when performing few-shot
class incremental learning, Fig. 2b. In each incremental
session, DSN leverages compressive network expansion to
enrich feature representation, as well as recalling old class
distributions to dynamically regularize the feature space.

4.1 Compressive Expansion: Feature Space Support

Before the incremental classes are trained, it is unknown
about how many nodes should be expanded. We propose to
tentatively expand the network so that it can accommodate
the incremental classes. A self-activation mechanism is then
introduced to judge whether the expanded nodes require to
be preserved or not, i.e., self-activated network compres-
sion. In this way, DSN constructs a minimal network to sup-
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port the distributions of all classes, as well as regularizing
the feature space, Fig. 3. This is implemented by optimizing

arg min
θ,θ′

Linc(ŷ(t),y; θ, θ
′
) + λ2Lexp(α(t); θ

′
), (3)

where Linc(ŷ(t),y; θ, θ
′
) is the FSCIL loss defined in Eq. 2.

θ′ is the expanded network parameter introduced below.
α(t) is a vector indicating node activation. Lexp is the loss
function defined for node expansion and activation, as

Lexp = ReLU(
‖α(t)‖1

c
− τt), (4)

where ReLU is the active function [48]. τt = 0.1 is a thresh-
old determined by linear search and fixed across datasets.
The right hand of Eq. 4 puts sparse constraints on α(t) with
the L1-norm, which is used to make the network sparse.

Tentative Node Expansion. This is performed by ten-
tatively adding nodes to a network layer, Fig. 3(b). The
expanded layer can be either the last convolutional layer or
the fully connected (FC) layer. The expanded node number
is set to be equal to that of the layer before expansion so
that the feature of each node is enriched. Denoting θ

′(t) pa-
rameters of the expanded layer in the t-th training session,
the features extracted by the expanded nodes are f(x; θ

′(t)).
The feature output f(x; θ

′(t)) from the expanded nodes are
fused with those f(x; θo) from the nodes before expansion
using a plus operation, as f(x; θ

′(t))⊕f(x; θo). The outputs
of the expanded network are

ŷ(t) = g
(
f(x; θ

′(t))⊕ γf(x; θo)); θc
)
, (5)

where g(·) denotes the classifier.
Self-Activated Node Compression. To minimize the

number of expanded nodes, a variable vector α(t) ∈ {0, 1}c,
is used to indicate which nodes are representative for the
new classes, Fig. 3(c). With the indicator vector, the ex-
panded features are calculated as(

α(t) � f(x; θ
′(t))

)
⊕
(
γf(x; θo)

)
, (6)

where � denotes the element-wise multiplication and ⊕ the
plus operation. γ is a regularization factor. Accordingly, the
network prediction is updated to

ŷ(t) = g
((
α(t) � f(x; θ

′(t))
)
⊕
(
γf(x; θo)

)
; θc
)
. (7)

According to Eq. 6, α(i)(t) → 1 implies that the i-
th expanded node is important for the incremental classes
while α(i)(t) → 0 implies that the expanded node is trivial.
A similar indicator vector is used in the DART method [49].
Differently, the indicator vector for DART is defined as
additional learnable network parameters, which aggravate
the risk of overfitting. To be adaptive, α(t) is designed to
be dependent on the outputs of the nodes in an positive
self-activation fashion, as

α(t) =
1

1 + e−βf(x;θ
′(t))

, (8)

where β is a magnification factor and the features are
updated as

f(x; θ
′(t))← α(t) � f(x; θ

′(t)). (9)

According to Eq. 8, the indicator vector α(t) is positively

dependent on features f(x; θ
′(t)) of the expanded nodes.

Although SE-Net [50] and GLU [51] defined node activation
mechanisms upon indicator vectors, both of them require
additional network parameters to learn the indicator vec-
tors. When only few new class samples are available, addi-
tional network parameters aggregate the risk of overfitting.
In this study, the indicator vector α(t) is designed to be
parameter-free, i.e., they are defined upon network node
values in an positive self-activation fashion. According to
Eq. 9, f(x; θ

′(t)) are positively dependent on the indicator
vector α(t). When training proceeds, elements of α(t) and
f(x; θ

′(t)) would be amplified or dwindled. According to
Eq. 3 and Eq. 4, α(t) would have sparse non-zero ele-
ments, which infers that f(x; θ

′(t)) would be sparse. Sparse
network nodes corresponding to significant features are
preserved while those corresponding to trivial features are
discarded. In this way, DSN realizes network compression
towards compact feature representation, Fig. 3(d).

4.2 Old Class Recalling: Feature Distribution Support
Although compressive network expansion facilitates sup-
porting the feature space, lacking the constraint of old class
distributions could lead to confusion between new and old
classes. According to FSCIL settings, the old class samples
are unavailable during incremental learning. Meanwhile,
memorizing all the old class data is expensive. To solve,
we propose to recall old class distributions to support the
feature space, Fig. 4.

New Class Distribution Estimation. To obtain old class
distributions, the new class distribution requires an esti-
mation in the current learning session. Assume that each
base class follows a Gaussian distribution N (µ,Σ). The
distribution (i.e., mean µ and covariance Σ) for a base
class can be estimated by all samples belonging to this
class. Supposing that the few samples follow an unbiased
distribution, the mean µ vector can be calculated upon these
examples. Denote xi the mean feature vector of the i-th new
class generated by the network in the t-th training session
and the network prediction of xi is ŷ(t)

i . The few-shot
samples are insufficient to precisely estimate the covariances
of the new classes. Inspired by the distribution calibration
method [18], we leverage the distributions of similar old
classes to estimate the covariances of the new classes. For
the i-th new class, the covariance is calculated by

Σi = ȳ
(t)ᵀ
i Σ, (10)

where Σ = [...,Σm, ...]
ᵀ is a matrix by concatenating Σm.

Σm in Σ is a covariance for either a new or an old class.
ȳ
(t)
i denotes the mean vector of network predictions for the
i-th new class data. This is used to estimate the similarity
between new and old classes. In the early training stages,
the predictions for new class samples are inaccurate so that
Σi largely depends upon the old class distributions. When
training proceeds, the predictions for new class samples
become accurate (ŷ(t)

i ∈ ŷ(t) becomes significant) and the
dependency upon old classes decreases.

Old Class Distribution Sampling. When incremental
learning proceeds, the new classes, of which the distribu-
tions have been estimated in the last session, change to
old classes. The old classes with estimated distributions are
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Fig. 4. Distribution recalling for feature space support. (a) In the current
learning session, the new class distribution is estimated by the old
class distributions. (b) In the next learning session, feature vectors are
sampled from old classes to regularize the incremental learning.

then recalled during the next incremental session to avoid
class confusion, which is performed by sampling Nj feature
vectors from the j-th old class distributions, as

x′j = Sample(N (µj ,Σj), Nj), (11)

where Sample(·) denotes a sampling function, which draws
random samples from a given Guassian distribution.

To reduce feature distribution confusion, more feature
vectors are sampled from the old classes which are close
to new classes. The sampling number Nj of j-th class is
determined by the mean vector, ȳ(t)

i , of predictions for the
i-th new class data, as

Nj =

{
Nj + 1 ȳ

(t)
i (j) ∈ topk(ȳ

(t)
i )

Nj otherwise
, (12)

where topk(·) is a function to select top-k largest elements
from a vector. ȳ(t)i (j) denotes j-th element of ȳ(t)

i .
Denote x′ the sampled feature vectors, the network

predictions of x′ are

ŷ′(t) = g
((
α(t) � f(x′; θ

′(t))
)
⊕
(
γf(x′; θo)

)
; θc
)
. (13)

With the sampled feature vectors x′ and their corresponding
predictions ŷ′, DSN is trained by optimizing the following
loss function, as

arg min
θ,θ′

Linc(ŷ(t),y; θ, θ
′
)

+ λ2Lexp(α(t); θ
′
) + λ3Lrec(ŷ′(t),y′; θ, θ

′
),

(14)

where Lexp(α(t); θ
′
) defined in Eq. 4 is for com-

pressive network expansion. Lrec(ŷ′(t),y′; θ, θ
′
) =

Lcls(ŷ′(t),y′; θ, θ
′
) + λ1Ldis(ŷ′(t), ŷ′(t−1); θ, θ

′
) is defined

for distribution recalling. y′ is the ground-truth label of
corresponding few-shot samples. λ1 and λ2 are empirically
defined regularization factors, which are set to 1.0 and 0.1
respectively in our experiments.

5 EXPERIMENTS

5.1 Experimental Setting

Dataset. We evaluate DSN on CIFAR 100, CUB200 and
miniImageNet. The categories in the datasets are divided
into base ones with adequate annotations and new ones
with K-shot annotated images. For FSCIL, the network is
trained upon base classes for the first session. New classes
are gradually added to train DSN in T incremental sessions.

In each incremental session, N-way new classes are added.
CIFAR100 and miniImageNet consist of 100 classes, where
60 classes are set as base classes and 40 as new classes. Each
new class has 5-shot annotated images (K = 5). The new
classes are divided into 8 sessions (T = 8), each of which has
5 classes (N = 5). CUB200 consists of 200 classes where 100
classes are set as base classes and the other 100 classes as
new classes under the settings of K = 5, T = 10, N = 10.

Training and Evaluation. DSN is built upon the
Resnet18 network and optimized with the SGD algorithm.
Four data augmentation strategies, including normalization,
horizontal flipping, random cropping, and random resizing,
are used. For the first incremental session, we train the
network using D(0) upon the base classes. When t > 0,
the network is trained upon D(t) with new classes. DSNs
trained for all T sessions are respectively evaluated on all of
the seen classes. The performance drop (“PD”) is defined as
PD = ACC(0) − ACC(T ), where ACC(0) denotes the 0-th
session performance and ACC(T ) denotes the T -th session
performance. The performance retention (“PR”) is defined
as PR = ACC(T )/ACC(0).

5.2 Performance
CUB200. Table 1 presents DSN’s performance and compar-
ison with the state-of-the-art methods with the Resnet-18
backbone. In the final session, DSN outperforms the state-
of-the-art CEC method [53] by 10.93% (63.21% vs. 52.28%),
which is a substantial improvement. This demonstrates
DSN’s plausibility to alleviate both the catastrophic forget-
ting and overfitting issues in FSCIL. CIFAR100. Compar-
isons provided in Table 2 also show that DSN is equivalent
to state-of-the-art methods in early sessions, but signifi-
cantly outperforms them when learning proceeds. mini-
ImageNet. Table 3 depicts DSN’s performance on miniIm-
ageNet dataset with the ResNet18 backbone. DSN offers
the lowest PD rate and the highest PR rate. Particularly,
the PD of DSN outperforms that of state-of-the-art CEC
by 3.6% (21.06% vs. 24.37%) and PR by 2.39% (68.54% vs.
66.15%). Again, these are substantial margins for such a
challenging task. The performance gain on CUB200 is larger
than those on CIFAR100 and miniImagenet datasets, which
can be attributed to the following reasons. On the one hand,
the class number of CUB200 is 200 while the others are
100. The larger class number implies more serious class
confusion in the feature space. On the other hand, CUB200
is defined for fine-grained classes (bird species), which have
smaller inter-class distances and larger feature distribution
crumbling. On CUB200, DSN can play out its advantages by
supporting the feature space to avoid class confusion and
feature distribution crumbling.

5.3 Model Analysis
Feature Space/Distribution Support. When new class sam-
ples are embedded to the baseline feature space, feature
distribution crumbling is originally observed, Fig. 5. In
contrast, when training proceeds and more classes are em-
bedded to the feature space, DSN appears to support the
feature space to alleviate feature distribution crumbling.

Evolution of α. In Fig. 6, in early training epochs, αt
falls into [0, 1] and all expanded nodes are activated to
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TABLE 1
Performance comparison on CUB200 using the Resnet18 backbone. “PD” denotes the performance drop. “PR” denotes the performance retention.

Method sessions PD ↓ PR ↑0 1 2 3 4 5 6 7 8 9 10
Ft-CNN 68.68 44.81 32.26 25.83 25.62 25.22 20.84 16.77 18.82 18.25 17.18 51.50 25%

iCaRL [28] 68.68 52.65 48.61 44.16 36.62 29.52 27.83 26.26 24.01 23.89 21.16 47.52 30.80%
EEIL [52] 68.68 53.63 47.91 44.20 36.30 27.46 25.93 24.70 23.95 24.13 22.11 46.57 32.19%
NCM [53] 68.68 57.12 44.21 28.78 26.71 25.66 24.62 21.52 20.12 20.06 19.87 48.81 28.92%
TOPIC [2] 68.68 62.49 54.81 49.99 45.25 41.40 38.35 35.36 32.22 28.31 26.28 42.40 38.26%
SKW [4] 68.28 60.45 55.70 50.45 45.72 42.90 40.89 38.77 36.51 34.87 32.96 35.32 47.99%
FSLL [3] 68.72 65.67 62.33 58.10 55.44 52.66 51.17 50.27 48.31 47.25 45.55 23.17 66.28%
CEC [5] 75.85 71.94 68.50 63.5 62.43 58.27 57.73 55.81 54.83 53.52 52.28 23.57 68.92%

DSN (ours) 80.86 78.18 75.57 72.68 71.42 70.12 69.16 67.94 66.99 65.10 63.21 17.65 78.17%

TABLE 2
Performance comparison on CIFAR100 using the ResNet18 backbone.

Method session PD ↓ PR ↑0 1 2 3 4 5 6 7 8
Ft-CNN 64.10 36.91 15.37 9.80 6.67 3.80 3.70 3.14 2.65 61.45 4.13%

iCaRL [28] 64.10 53.28 41.69 34.13 27.93 25.06 20.41 15.48 13.73 50.37 21.41%
EEIL [52] 64.10 53.11 43.71 35.15 28.96 24.98 21.01 17.26 15.85 48.25 24.72%
NCM [53] 64.10 53.05 43.96 36.97 31.61 26.73 21.23 16.78 13.54 50.56 21.12%
TOPIC [2] 64.10 55.88 47.07 45.16 40.11 36.38 33.96 31.55 29.37 34.73 45.81%

CEC [5] 73.07 68.88 65.26 61.19 58.09 55.57 53.22 51.34 49.14 23.93 67.25%
DSN (ours) 73.00 68.83 64.82 62.64 59.36 56.96 54.04 51.57 50.00 23.00 68.49%

TABLE 3
Performance Comparison on miniImageNet using the ResNet18 backbone.

Method session PD ↓ PR ↑0 1 2 3 4 5 6 7 8
Ft-CNN 61.31 27.22 16.37 6.08 2.54 1.56 1.93 2.60 1.40 59.91 2.28%

iCaRL [28] 61.31 46.32 42.94 37.63 30.49 24.00 20.89 18.80 17.21 44.1 28.07%
EEIL [52] 61.31 46.58 44.00 37.29 33.14 27.12 24.10 21.57 19.58 41.73 31.93%
NCM [53] 61.31 47.80 39.31 31.91 25.68 21.35 18.67 17.24 14.17 47.14 23.11%
TOPIC [2] 61.31 50.09 45.17 41.16 37.48 35.52 32.19 29.46 24.42 36.89 39.83%

CEC [5] 72.00 66.86 62.97 59.43 56.70 53.73 51.19 49.24 47.63 24.37 66.15%
DSN (ours) 66.95 62.46 58.78 55.64 52.85 51.23 48.9 46.78 45.89 21.06 68.54%

0-𝑡ℎ Session 1-𝑠𝑡 Session 2-𝑛𝑑 Session 3-rd Session 4-𝑡ℎ Session

(a) Baseline

(b) Dynamic Support Network

Fig. 5. Feature spaces of the baseline approach and our DSN approach.
Adding new class samples to the feature space projected by the base-
line causes distribution crumbling. The feature space of DSN is better
supported to avoid distribution crumbling.

E
p
o
ch

Node Index

Fig. 6. Evolution of the indicator vector (α) for self-activated node
compression. (Lighter color denotes larger values)

construct redundant feature representation. When training
proceeds, α approaches 0 or 1and ‖α‖1 saturated to τ so
that few (approximately 10%) expanded nodes are activated
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Fig. 7. Activation ratio of the extended nodes during training.
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Fig. 8. Confusion matrices between old classes (0-189) and new classed
(190-199). (Best viewed in color with zoom)

to learn compact feature representation. The experiments
validate that the performance gain does not attribute to the
huge additional node cost.

Class Confusion. In Fig. 8, we compare the classification
confusion matrices of the baseline method and DSN. For the
baseline approach, the diagonal elements of the confusion
matrix have small values, particularly for the old classes (0-
189) and larger values for the new classes (190-199), which
implies that training with few samples overfits the new
classes and forgets the old ones. With DSN, the diagonal
elements of the confusion matrix become larger (particularly
for the old classes), which means less class confusion.

5.4 Ablation Study
5.4.1 Compressive Network Expansion
In Table 4, we validate the components of DSN on the CUB
dataset using the performance for the last session. With
compressive node expansion, the performance improves by
13.59% (37.90% vs. 24.31%). Table 5 evaluates the perfor-
mance by applying compressive node expansion to different
network layers, e.g., the 3 × 3 conv. layer, 1 × 1 conv. layer
and the fully connected layer. DSN achieves comparable
performance for the three network layers. The best results
are from the fully connected (fc) layer, as this is more close
to the feature representation and can be better optimized.

5.4.2 Old Class Recalling
In Table 4, with old class recalling, the performance further
increases by 25.31% (from 63.21% to 37.90%). Such a large
margin attributes to the reduction of overfitting and the
inter-session confusion. While the feature recalling strategy
significantly outperforms the image recalling strategy.

Class Distribution Estimation. In Table 6, we compare
the proposed distribution estimation (DE) approach with
the distribution calibration (DC) approach [18]. DSN with

TABLE 4
Ablation study of DSN on CUB Dataset using the Resnet18 backbone.
“Images” denotes the Old Class Recalling using the old class images.

“Features” denotes the Old Class Recalling using the sampled features.

Baseline X
Expansion X X X X

Compression X X X
Image Recalling X

Feature Recalling X
ACC 24.31 28.41 37.90 48.19 63.21

TABLE 5
Comparison of compressive node expansion on different network

layers. “FC” denotes the fully connected layer.

Net Layer 3× 3 conv. 1× 1 conv. FC

Acc. 37.05 35.76 37.90

DE achieves a marked improvement in terms of perfor-
mance (59.22% vs. 51.84%). The reason for such an improve-
ment is that DE makes full use of the learnt distributions to
precisely estimate new class distributions. When using all
old classes for distribution estimation (ODE), DSN further
improves the accuracy by 2.16% (from 59.22% to 61.38%).

Class Distribution Sampling. In Table 7 we compare
two feature sampling strategies. The adaptive sampling
strategy (ASS), which can determine the sampling number
from each old classes according to the network prediction,
outperforms the equal sampling strategy (ESS), which sam-
ples equal numbers of features from all classes. The reason
lies in that ASS focuses on the old classes which are close to
new classes and this facilitates feature discriminability.

6 CONCLUSION

We proposed Dynamic Support Network (DSN), providing
a systematic approach to solve the catastrophic forgetting
and over-fitting issues in few-shot class incremental learning
(FSCIL). DSN constructed a scalable framework for feature
representation expansion. On a simple baseline, DSN im-
proved the FSCIL performance, in striking contrast with the
state-of-the-art approaches. From the perspective of feature
space support and feature distribution support, DSN pro-
vides fresh insights to the challenging FSCIL problem.
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