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Abstract—Modern CNN-based object detectors assign anchors for ground-truth objects under the restriction of object-anchor
Intersection-over-Union (IoU). In this study, we propose a learning-to-match (LTM) method to break IoU restriction, allowing objects to
match anchors in a flexible manner. LTM updates hand-crafted anchor assignment to “free” anchor matching by formulating detector
training in the Maximum Likelihood Estimation (MLE) framework. During the training phase, LTM is implemented by converting the
detection likelihood to anchor matching loss functions which are plug-and-play. Minimizing the matching loss functions drives learning
and selecting features which best explain a class of objects with respect to both classification and localization. LTM is extended from
anchor-based detectors to anchor-free detectors, validating the general applicability of learnable object-feature matching mechanism
for visual object detection. Experiments on MS COCO dataset demonstrate that LTM detectors consistently outperform counterpart
detectors with significant margins. The last but not the least, LTM requires negligible computational cost in both training and inference
phases as it does not involve any additional architecture or parameter. Code has been made publicly available.

Index Terms—Object Detection, Maximum Likelihood Estimation, Learning to Match, Anchor-Free Detector, Generalized Linear
Model.
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1 INTRODUCTION

O VER the past few years we have witnessed the success
of convolution neural network (CNN) for visual object

detection [1]–[8]. To represent objects of various appear-
ance, aspect ratios and poses with limited convolutional
features, many CNN-based detectors leverage anchor boxes
as reference points for object localization [1]–[7], [9], [10]. By
assigning each object to a single anchor or multiple anchors
at proper scales and aspect ratios, convolutional features
are determined and two fundamental detection procedures,
classification and localization, are carried out.

Anchor-based detectors leverage spatial alignment, i.e.,
Intersection over Union (IoU) between objects and anchors,
as the criterion for anchor assignment. Each assigned anchor
independently supervise network learning for object predic-
tion, based upon the assumption that the anchors spatially
aligned with objects are always appropriate for classification
and localization. In what follows, however, we argue that
such an assumption is implausible and the spatial alignment
should not be the sole criterion for anchor assignment.

On the one hand, for objects of acentric features, e.g.,
slender objects, the most representative features are not
close to their geometric centers. A spatially aligned anchor
might correspond to less representative features, which de-
teriorate classification and localization performance. On the
other hand, it is implausible to match objects with proper
anchors/features using the IoU criterion when multiple
objects come together. These issues arise from pre-defining
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single anchors for specific objects which then independently
supervises network learning for object predictions. The open
problem is how to flexibly match anchors/features with
objects, which is the focus of this study.

In this paper, we propose a learning-to-match (LTM)
approach for object detection1, with the aim to update hand-
crafted anchor assignment to learnable anchor/feature con-
figuration, Fig. 1. CNN-based detector with learning-to-
match mechanism, referred to as an LTM detector, optimizes
the training procedure from three aspects. First, to achieve
a high recall rate, the detector requires to guarantee that at
least one anchor’s prediction is close to an object’s ground-
truth. Second, to achieve high detection precision, the de-
tector requires to classify anchors with poor localization,
i.e., large bounding-box regression error, into background.
Third, anchors’ predictions should be compatible with
the non-maximum suppression (NMS) procedure, i.e., the
higher classification score is, the more accurate localization
is. Otherwise, an anchor predicts accurate location but low
classification score will be suppressed by the subsequent
NMS procedure.

To fulfill these purposes, we propose to define an anchor
bag for each object and perform object-anchor matching in
a maximum likelihood estimation (MLE) framework [11],
[12]. We connect the likelihood probabilities of anchors with
that of anchor bags by introducing positive and negative
anchor matching functions. Optimizing the matching func-
tions drives maximizing the detection customized likeli-
hood and selecting optimal anchors in a “soft” manner.
Meanwhile, the anchors with large classification or local-
ization error are classified as backgrounds. During training,
the anchor matching functions are converted into a plug-

1. Code is available at github.com/zhangxiaosong18/FreeAnchor
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Fig. 1. Comparison of the hand-crafted anchor assignment (upper) with our learning-to-match method (lower). The former leverages Intersection
over Union (IoU) between objects and anchors as the criterion for anchor assignment. Each assigned anchor independently supervises detector
learning. In contrast, our approach allows each object flexibly matching positive/negative anchors from a “bag” of anchors by jointly evaluating object
classification and object localization confidence. The anchor matching is performed in a “soft” manner. In the early training epochs, all anchors have
similar matching confidence. In the final epoch, the confidence of positive anchors evolve to be large while those of negative anchors become small.
Each box on the prediction result map indicates an anchor center point.

and-play loss function, which then drives detector training
and object-anchor matching.

The learning-to-match method was first proposed in our
NeurIPS 2019 paper [13] and is promoted theoretically and
experimentally in this full version. The contributions of this
paper include:

(1) We formulate detector training in a maximum like-
lihood estimation (MLE) framework, where detection cus-
tomized likelihood is defined to unify two fundamental
modules, classification and localization, of object detection.
Maximizing the likelihood drives matching optimal anchors
which guarantee the comparability of object classification
and object localization with NMS.

(2) We propose a learning-to-match method and update
hand-crafted anchor assignment to learnable anchor con-
figuration. With differential Mean-max matching functions
and plug-and-play anchor matching loss, the learning-to-
match method selects optimal positive anchors and mines
hard negative anchors in a “soft” manner.

(3) We derive the Mean-max matching functions using

the generative linear model (GLM), which justifies detector
optimization from the perspective of sufficient statistics.

(4) We achieve state-of-the-art detection performance on
the commonly used COCO dataset, and validate the general
applicability of the learning-to-match method on anchor-
based and anchor-free detectors.

The remainder of this paper is summarized as follows.
Related works are described in Section 2 and the pro-
posed learning-to-match method and object detectors are
presented in Section 3. Experimental results are described
in Section 4. We conclude this paper in Section 5.

2 RELATED WORK

According to recent survey papers [14]–[16], various tax-
onomies can be used to category the large amount of
CNN-based object detectors, e.g., one-stage [3] vs. two-
stage [5], single-scale features [3] vs. Feature Pyramid Net-
work (FPN) [6], and handcrafted network [7] vs. network
architecture search [17]. In this paper, related works are
reviewed from the perspective of anchors.
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2.1 Anchor-based Method
A detection pipeline requires generating a set of bounding
boxes along with their classification labels associated with
objects in an image. However, it is not trivial for a CNN-
based detector to directly predict an order-less set of ar-
bitrary cardinals [18]. One widely-used workaround is to
introduce anchors, each of which indicates a location on
the convolutional feature map. With dense anchors config-
ured, a divide-and-conquer process can be defined to match
objects with convolutional features according to the IoU
criterion, Fig. 1.

Anchor-based approach has been successfully demon-
strated in modern detectors including Faster R-CNN [3],
SSD [7], FPN [6], RetinaNet [5], DSSD [19], and
YOLOv2 [20]. In these detectors, dense anchors require to be
configured upon convolutional feature maps so that features
can match object extent and bounding box regression can
be well initialized. During detector training, anchors are
assigned to objects or backgrounds by thresholding their
IoUs with ground-truth bounding boxes [3].

IoU-Net [21] attempted selecting anchors by predicting
the IoU between a detected bounding-box and a ground-
truth box. By introducing IoU-guided NMS, it reduced sup-
pression failures caused by misleading classification confi-
dences. Cascade RPN [22] improved region-proposal quality
and detection performance by addressing the limitation of
the conventional RPN which heuristically defines anchors
and aligns features to anchors. Instead of using multiple
anchors with predefined scales and aspect ratios, Cascade
RPN relied on a single anchor per location and performed
multi-stage refinement. Each stage was progressively more
stringent in defining positive samples by starting out with
an anchor-free metric followed by anchor-based metrics. To
align features with anchors throughout the stages, adaptive
convolution was proposed to learn sampled features guided
by anchors.

Despite the great progress, existing anchor-based de-
tection methods remain restricted by the heuristics that
spatially aligned anchors are compatible for both object clas-
sification and localization. For objects of acentric features,
however, such heuristics is implausible and the detector
could miss the optimal anchors/features. To overcome this
disadvantage, we propose the learning-to-match method,
and target at breaking the IoU restriction so that objects can
flexibly match anchors under the principle of detection cus-
tomized likelihood. Our work is related to the deformable
convolutional network (DCN) [23], which augments the
spatial sampling locations of feature with additional offsets
and learns offsets from the target tasks. The essential differ-
ence lies in that we use a learning-to-match method instead
of the spatial offset strategy.

2.2 Anchor Optimization Method
To facilitate object-anchor matching, researchers proposed
to refine anchors [18], [24] or adaptively produce optimal
anchors [25]. MetaAnchor [18] learned to predict anchors
from the arbitrary customized prior boxes with a sub-net.
GuidedAnchoring [25] leveraged semantic features to guide
the prediction of anchors while replacing dense anchors
with predicted anchors. Gaussian YOLO [26] introduced

localization uncertainty which indicates the reliability of
anchors/bounding-boxes. By using the predicted localiza-
tion uncertainty during the detection process, Gaussian
YOLO implemented online anchor/feature localization op-
timization.

Existing approaches have taken a step towards learn-
able anchor configuration. Nevertheless, to the best of our
knowledge, there still lacks a systematic approach for an-
chor selection in the detector training procedure, which in-
hibits the simultaneous optimization of object classification
and localization. For most of the methods, the anchors are
evenly distributed within the image, so that each part in the
image is considered with the same importance level. On the
other hand, the objects in an image do not follow a uniform
distribution, i.e., there is a location imbalance issue [27].
In this paper, we define a detection customized likelihood,
and aim to jointly optimize anchor matching and solve the
location imbalance issue in a systematic way.

2.3 Anchor-free Method

To break the limitations brought by anchors, researchers at-
tempted per-pixel prediction by modeling objects as feature
points. Each feature point corresponding to a convolutional
feature vector can be directly used for object classification
and bounding-box regression.

EAST [28] used each deep pixel within the object
bounding-box to learn detectors, while selecting the pixel of
highest classification score for object localization. Fully con-
volutional one-stage object detector (FCOS) [29] attempted
to solve object detection in a per-pixel prediction fashion,
which is similar with semantic segmentation, leveraging
pixel-level supervision and center-ness bounding box re-
gression for object detection.

Considering that using all pixels within object extent
for prediction significantly increases the computational cost,
CornerNet [30] and CenterNet [8] used two corner points
and a central point. To handle object appearance variation,
a center-pooling operation was designed to align the most
representative features to corner/center points. With the
similar idea, ExtremePoint [31] detected four key-points
(top-most, left-most, bottom-most, right-most) and one cen-
ter point of objects using a keypoint estimation network.
The five key-points were grouped into a bounding box
if they are geometrically aligned. To improve adaptability,
RepPoint [32] learned to automatically arrange keypoints
in a manner which bounds the spatial extent of an object
and indicates semantically significant local areas. It thus
used limited key-points to sample a space of bounding
boxes. FSAF [33] addressed hand-crafted feature selection
and overlap-based anchor sampling by introducing online
feature selection and dynamically assigning each instance
to the most suitable feature level on the feature pyramid.

Anchor-free methods, which represent each object with
a couple of feature points, have demonstrated greater po-
tential using simpler pipelines. Nevertheless, most feature
points are hand-crafted, which restricts the representative
capacity of convolutional feature maps given limited spatial
resolutions. In this study, we propose the learning-to-match
method and apply it to anchor-free detectors. Our approach
not only selects optimal features but also enhances the
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representative capacity of convolutional features by using
a bag of features which collaboratively supervise detector
training.

3 METHODOLOGY

In this section, we first present the learning-to-match
method in the maximum likelihood estimation (MLE)
framework. We then introduce anchor-matching functions
to implement the learning-to-match method for detector
training. We finally implement anchor-based and anchor-
free detectors based on the proposed learning-to-match
method. The derivation about anchor matching functions
is based on the generative linear model (GLM), which is
included in the appendix.

3.1 Learning-to-Match Method

To formulate the learning-to-match method in the MLE
framework, we first define detection customized likelihood
to unify object classification and object localization.

3.1.1 Detector Training as Maximum Likelihood Estimation
Given a training image X containing I objects, the ground-
truth annotations are denoted as B where the ground-
truth box for i-th object is denoted as bi ∈ B. On the
convolutional feature maps of X , a set of anchors A are
defined as reference points at multiple scales and aspect
ratios. Each anchor corresponds to a feature vector across
feature channels.

In most CNN-based detectors, the hand-crafted criterion
based on IoU is used to assign anchors for each object. When
the IoU between the ground-truth box bi and anchor aj is
greater than a threshold, bi matches aj . If multiple objects’
IoUs are larger than the threshold, the object of the largest
IoU will successfully match this anchor, which guarantees
that each anchor matches a single object at most while an
object can match multiple anchors. According to the IoU
criterion, anchors in A are categorised to multiple positive
anchor bags Ai ⊆ A+ and a negative anchor bag A−, and
A = A+ ∪ A−. During inference, each anchor aj ∈ Ai
predicts a classification confidence aclsj ∈ [0, 1] by feeding
the feature vector to a classification sub-network. The an-
chor also predicts an object’s location, alocj = {x, y, w, h},
by feeding its feature vector to a bounding box regression
sub-network.

With anchor-object assignment, the classification loss2 of
a positive anchor is defined as

Lclsij (θ) = − log
(
aclsj (θ)

)
, for aj ∈ Ai,

and the classification loss of a negative anchor is defined as

Lclsj (θ) = − log
(
1− aclsj (θ)

)
, for aj ∈ A−,

where aclsj (θ) denotes the classification confidence of anchor
aj given network parameters θ. The localization loss for a
positive anchor is defined as

Llocij (θ) = `reg
(
alocj (θ), bi

)
,

2. The binary cross entropy loss is used to replace the Focal Loss [5]
for formulation simplicity.

where `reg(·) denotes SmoothL1 regression loss [1] between
location prediction alocj and ground-truth bounding box bi.

Based on the loss defined, detector training is carried out
by optimizing the following objective function, as

min
θ
L(θ) =

∑
i

∑
aj∈Ai

(
Lclsij (θ) + βLlocij (θ)

)
+
∑

aj∈A−

Lclsj (θ),

(1)
where β is a regularization factor balancing the importance
of the regression loss. From the perspective of likelihood,
the probability about positive anchor aj correctly predicting
the i-th object is defined as

Pij(θ) = exp
(
− Lclsij (θ)− βLlocij (θ)

)
= aclsj (θ)exp

(
− β`reg(alocj (θ), bi)

)
,

(2)

which unifies the classification confidence aclsj (θ) with the
localization confidence exp{−β`reg(alocj (θ), bi)} of anchor
aj . Accordingly, minimizing detection loss L(θ) defined
by Eq. 1 for positive anchors is equal to maximizing a
likelihood probability, as

max
θ
P(θ) =

∏
i

∏
aj∈Ai

Pij(θ). (3)

3.1.2 Detection Customized Likelihood
Eqs. 2 and 3 unify the classification and localization mod-
ules of positive anchors from the perspective of likelihood.
However, the likelihood is based on hand-crafted anchors
without learning-to-match. In what follows, we introduce
detection customized likelihood in the MLE framework to
update hand-crafted anchor assignment to learnable an-
chor/feature matching. The matching procedure operates
like probabilistic multiple instance learning [12], where a
positive bag is defined to contain at least one positive anchor
and a number of negative anchors. During training, each
object corresponding to a positive anchor bag learns to
match positive/negative anchors from the bag by jointly
evaluating object classification and object localization con-
fidence. Correctly matched positive/negative anchors are
true positive/negative anchors.

To achieve a high recall rate, for each object bi ∈ B, it
requires to guarantee that there exists at least one anchor
aj ∈ Ai whose predictions (aclsj and alocj ) are close to
the ground-truth. This means that the probability that the
anchor bag contains the true positive should be high. The
true positive probability of anchor bag Ai is defined as

Ptpi (θ) = p(Yi = 1|Ai; θ),

where Yi ∈ {1, 0} is a binary variable indicating whether
anchor bag Ai can predict object bi well or not. The likeli-
hood of a matched anchor follows the definition in Eq. 2, as

p(yij ; θ) = Pij(θ)
= aclsj (θ)exp

(
− β`reg(alocj (θ), bi)

)
,

(4)

where yij ∈ {1, 0} is a binary variable indicating whether
anchor aj can predict object bi well or not. yij = 1 means aj
is a positive anchor and yij = 0 means aj is not a positive
anchor.

To achieve high detection precision, detectors must clas-
sify the anchors of poor localization into negatives, which
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means that the true negative probability should be high.
The true negative probability of anchor bag Ai is defined as

Ptni (θ) = p(Y −i = 0|Ai; θ),

where Y −i ∈ {1, 0} is defined to indicate that Ai falsely
localize object bi. The likelihood that an anchor falsely
localize the object is defined as

p(y−ij ; θ) = aclsj (θ)(1−max
i

IoUij),∀i, (5)

where y−ij ∈ {1, 0} is defined to indicate that aj falsely
localize object bi. y−ij = 1 indicates that aj is a negative
anchor and y−ij = 0 indicates that aj is not a negative
anchor. IoUij denotes the Intersection over Union between
the prediction of anchor aj and the ground-truth object bi.

By maximizing the true positive probability Ptpi (θ) and
true negative probability Ptni (θ) defined above, Eq. 3 is
materialized to a detection customized likelihood function,
as

PM(θ) =
∏
i

Ptpi (θ) ·
∏
i

Ptni (θ)

=
∏
i

p(Yi = 1|Ai; θ) ·
∏
i

p(Y −i = 0|Ai; θ).
(6)

By maximizing the likelihood defined by Eq. 6, we aim
to simultaneously match anchors with objects and train an
optimal detector.

3.1.3 Anchor Matching Function
Eq. 6 defines the detection customized likelihood of anchor
bags. However, it remains lacking a mechanism to bridge
the likelihood of anchor bags with that of anchors. To fulfill
this purpose, we propose the anchor matching functions,
M+ andM−, as

p(Yi = 1|Ai; θ) =M+

(
p(yi; θ)

)
, (7)

and
p(Y −i = 0|Ai, θ) =M−

(
p(y−i ; θ)

)
, (8)

where p(yi; θ) = {p(yij ; θ); j = 1, . . . ., |Ai|} defines a set of
probabilities indicating whether the set of anchors in bag Ai
can predict object bi well or not. p(y−i ; θ) = {p(y−ij ; θ); j =
1, . . . ., |Ai|} defines a set of probabilities indicating the set
of anchors in bag Ai falsely localize object bi.

Based on the anchor matching functions, the detection
customized likelihood in Eq. 6 is expanded as

PM(θ) =
∏
i

Ptpi (θ) ·
∏
i

Ptni (θ)

=
∏
i

p(Yi = 1|Ai; θ) ·
∏
i

p(Y −i = 0|Ai; θ)

=
∏
i

M+

(
p(yi; θ)

)
· M−

(
p(y−i ; θ)

)
.

(9)

So far, the remaining problem is materializing the anchor
matching functionsM+ andM−. An off-the-shell approach
is multiple instance learning [12], which can select (match)
the instance (anchor) of largest likelihood from a bag of
anchors, as

p(Yi = 1; θ) = p(max
j
yij = 1; θ),

0.0 0.2 0.4 0.6 0.8 1.0
i1

0.0

0.2

0.4

0.6

0.8

1.0

i2

0.200

0.350

0.500

0.650

0.800

0.950

0.05

0.20

0.35

0.50

0.65

0.80

0.95

+
(

i1
,

i2
)

(a)

0.0 0.2 0.4 0.6 0.8 1.0
i1

0.0

0.2

0.4

0.6

0.8

1.0

i2

0.200

0.350

0.
50

0

0.650

0.
80

0

0.950

0.05

0.20

0.35

0.50

0.65

0.80

0.95

(
i1

,
i2

)

(b)

Fig. 2. Illustration of two-dimensional Mean-max functions for pos-
itive anchor matching (a) and negative anchor matching (b). “Two-
dimensional” means there are two anchors in an anchor bag. Each
anchor corresponds a dimension. When the values of both dimensions
are close to zero, the Mean-max function approximates the Mean
function and the function value is determined by the two dimensions
(anchors). When either value of the two dimensions is large, the Mean-
max function approximates the max function and the function value is
determined by the dimension of larger value.

where p(Yi = 1) denotes the likelihood of a positive anchor
bag. It means that there exists at least one anchor which can
correctly match the object (yij = 1).

Nevertheless, we validated that multiple instance learn-
ing is not applicable when training network parameters and
selecting instances (anchors) at the same time. With multiple
instance learning, a single anchor is selected from a bag of
anchors to update the network parameter. At early training
epochs, however, the confidence of each anchor is small
for randomly initialized network parameters. Therefore, the
anchor of the highest confidence may not be the best choice
for detector training. To solve this problem, we propose the
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Fig. 3. Network architecture of the proposed LTM detector. The head of the detector consists of two subnets, one for object classification and other
for object localization. During detector training, minimizing the anchor matching loss LM(θ) drives matching positive/negative anchors within the
positive anchor bag in a “soft” manner. Meanwhile, the Focal Loss LF (θ) is applied on background (the negative bag) to prevent the vast number
of easy negatives from overwhelming the detector. This architecture is also applicable to an anchor-free detector (LTM-AF) by simply replacing the
anchors with pixels on the feature pyramid.

Mean-max function3, which matches anchors in a “soft”
manner according to their likelihood, as

M+(φi) =

∑
j

φij
1−φij∑

j
1

1−φij
, (10)

where φi = p(yi; θ) and φij = p(yij ; θ) respectively denote
the likelihood set of anchors and the likelihood of the j-th
anchor.

When training is insufficient, the Mean-max func-
tion [13], Fig. 2, is close to the Mean function, so that
all anchors in a bag are used for training. When training
proceeds, the confidence of some anchors increases and
the Mean-max function moves closer to the max function.
When sufficient training has taken place, a few optimal
anchors in each anchor bag will have high likelihood to
match the object.

Similarly, a negative matching function M− is intro-
duced to select negative anchors, as

M−(φi) =
∑
j

φij
1−φij∑

j
1

(1−φij)2
, (11)

where φi = p(y−i ; θ) and φij = p(y−ij ; θ) respectively denote
the likelihood set of anchors and the likelihood of the j-th
anchor. As shown in Fig. 2(a) and Fig. 2(b), M− changes
faster thanM+ from Mean to max. The reason lies in that
M+ requires to fully consider all anchors using the Mean
function before it can match an optimal anchor using the
max function. In contrast,M− targets at matching negative
anchors from positive anchor bags. The faster change ofM−
facilities earlier determining hard negative anchors.

The simultaneous usage of M+ and M− contributes
a bag splitting mechanism, which matches positive an-
chors/features while filtering out noisy anchors/features.
Such a mechanism facilities matching representative an-
chors/features while mining very hard instances, as a com-
plement to focal loss which handling the large mount of
negative instances.

3. The derivation of Mean-max function from the perspective of
generalized linear model (GLM) is detailed in Appendix.

3.2 Anchor-based Detector

The proposed LTM detector is implemented upon the Fea-
ture Pyramid Network (FPN) [6] atop an ResNet [34] or
ResNeXt [35] backbone, Fig. 3. Following FPN, feature lay-
ers from P3 to P7, each of which has C = 256 channels, are
used for detection. The head of the LTM detector is made up
of two subsets, one for object classification i.e., predicting
object category confidence, and other for object localization,
i.e., regressing object bounding boxes using anchor boxes as
the reference locations.

Anchor Bag Construction. On the feature layers, anchors
are generated following the setting of RetinaNet [5]. There
are 9 anchors with three sizes {20; 21/3; 22/3} and three
aspect ratios {1 : 2; 1 : 1; 2 : 1} for each pixel on each feature
layer. Anchors on all feature layers cover the scale range
from 32 to 813 pixels with respect to the input image. Based
on the anchors defined, an anchor bag is constructed for
each object. The positive anchor bag is defined according to
the IoU between the anchors and the object ground truth but
there is no IoU threshold used. The anchors not belonging
to any positive bag are included to the negative bag A−.

Specifically, we select top-K anchors according to the
IoU instead of using a predefined IoU threshold for the
following two reasons: (1) Using top-K anchors/features
can guarantees consistent bag sizes. In contrast, using a
predefined IoU threshold cannot produce the same number
of anchors for bags (inconsistent bag sizes), which makes
it difficult to implement loss vectorization; (2) It is not
necessary to guarantee that all anchors in a bag are of high
likelihood, because our approach can match postive anchors
while depressing negative ones. In experiments, the number
(K) of anchors in each positive anchor bag is significantly
larger than that of hand-crafted assigned anchors, which
increases the opportunity to match anchors of small IoU.

Training and Inference. For detector training, maximiz-
ing the detection customized likelihood defined by Eq. 9
simultaneously optimizes network parameters and matches
anchors (determining p(yij ; θ) in Eq. 4 and p(y−ij ; θ) in
Eq. 5). For CNN-based detectors, maximizing the detection
customized likelihood is implemented by minimizing the
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anchor matching loss, as

LM(θ) =− logPM(θ)

=−
∑
i

logM+

(
p(yi; θ)

)
−
∑
i

logM−
(
p(y−i ; θ)

)
,

(12)

by applying a − log(·) function on Eq. 9. To balance the im-
pact of positive and negative anchors, LM(θ) is normalized
by the numbers of objects (|B|), as

LM(θ) =− 1

|B|
∑
i

logM+

(
p(yi; θ)

)
− 1

|B|
∑
i

logM−
(
p(y−i ; θ)

)
,

(13)

where p(yi; θ) = {p(yij ; θ); j = 1, . . . ., |Ai|} and p(y−i ; θ) =
{p(y−ij ; θ); j = 1, . . . ., |Ai|}. p(yij ; θ) and p(y−ij ; θ) are re-
spectively calculated by Eq. 4 and Eq. 5.M+(·) andM−(·)
are respectively defined by Eq. 10 and Eq. 11.

During detector training, we minimize the anchor
matching loss defined by Eq. 13. Considering the extreme
imbalance of foreground-background classes, the Focal Loss
is adopted to prevent the vast number of easy negative
anchors from overwhelming the detector, as

LF (θ) = − 1

N

∑
aj∈A−

aclsj (θ)γ log
(
1− aclsj (θ)

)
,

where γ denotes the exponential parameter for the Focal
Loss [5]. Accordingly, the final loss function for the LTM
detector is defined by combining the Focal loss with anchor
matching loss, as

L(θ) = LM(θ) + LF (θ), (14)

where the anchor matching loss and Focal loss are empiri-
cally set to be of equal importance.

According to Eq. 14, the anchor matching procedure
and detector training are fused and optimized using the
stochastic gradient descent (SGD) algorithm in an end-to-
end manner. The inference procedure of the LTM detector
is exactly the same as RetinaNet, i.e., we use the learned
network parameters to predict classification scores and ob-
ject bounding boxes, which are fed to the NMS procedure
for object detection. As our detector does not involve any
additional network architecture compared it with the base-
line detector and the anchor matching loss is only applied in
the training phase, the computational cost overhead in the
inference phase is negligible.

3.3 Anchor-Free Detector

The proposed learning-to-match method is extended from
the anchor-based detector to an anchor-free detector, termed
LTM-AF. LTM-AF performs object detection in a per-pixel
prediction fashion [29], without anchors involved. Follow-
ing the way to construct anchor bags we construct positive
point bags, where each point corresponds to a pixel on the
convolutional feature map. However, we must realize that
the pixels/points have no object extent information and how
to assign them to objects of various sizes and aspect ratios
is problematic.

𝐴𝑖

𝑏𝑖
𝑙+1

𝑏𝑖
𝑙

𝑏𝑖
𝑙−1

Fig. 4. Point bag construction for the proposed LTM-AF detector based
on normalized distances. Each ground-truth object is normalized and
scaled to feature layers using its bounding box center as the origin. The
normalized distance is a block distance from the feature points to the
normalized boxes. Top-K points of smallest normalized distance (within
the dashed box) are selected to construct the feature point bag.

To solve this problem, we propose a distance normal-
ization strategy to assign feature points to objects and
construct point bags. Denote an object bounding box as
bi = (xi, yi, wi, hi) where (xi, yi) is the central point and
(wi, hi) the width and height of bi. Denote a feature point as
aj = (xj , yj , lj) where (xj , yj) is the point coordinate and lj
the index of feature layer on the feature pyramid. To match a
ground-truth box bi with a point aj without extent, the nor-
malized distances is first defined as max

( |xi−xj |
wi×2lj

,
|yi−yj |
hi×2lj

)
.

For each ground-truth object, we calculate and sort the
normalized distances of points in bounding box bi. We then
selectK points of smallest normalized distances to construct
a positive bag Ai, Fig. 4. This procedure guarantees that a
similar number of feature points on each feature layer be
included in a bag, which facilities point-object matching.
When positive point bags are constructed, the representative
feature points can be matched with each object during
detector training.

When training an anchor-free detector, we use a similar
loss defined for the anchor-based detector in Eq. 14 by
simply replacing the regression loss function `reg(·) with
the GIoU Loss function [36]. We also experimentally search
the hyper-parameter K and regression weight β. In exper-
iments, we validated that the anchor-free detector (LTM-
AF) achieved comparable performance and speed with the
anchor-based detector (LTM).

4 EXPERIMENTS

The proposed learning-to-match method was applied to
train anchor-based and anchor-free detectors. For each kind
of detector, we first described experimental settings, then
reported the performance and compared with state-of-the-
arts. The effect of the proposed learning-to-match method
was analyzed on the anchor-based detector.

4.1 Experimental Settings

Experiments were carried out on COCO 2017 [37], which
contains∼118k images from 80 object categories for training
(train). In the dataset, 5k images were used for validation
(val) and ∼20k for test (test-dev). Detectors were trained on
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TABLE 1
Effect of anchor matching on COCO test-dev set. RetinaNet (K

anchors) denotes using top-K anchors (without anchor matching) to
supervise each object. LTM (M+) uses solely positive anchor

matching while LTM uses both positive and negative anchor matching.

Detector (Matching) AP AP50 AP75 APS APM APL
RetinaNet (baseline) 35.7 55.0 38.5 18.9 38.9 46.3

RetinaNet (K anchors) 35.7 56.0 38.0 19.2 39.3 46.7
LTM (M+) 38.7 57.3 41.6 20.2 41.3 50.1

LTM 39.2 57.9 42.1 21.5 41.6 49.3

TABLE 2
Performance improvement under different object crowdedness.

detector AP sparse AP medium AP dense
RetinaNet (baseline) 41.2 32.0 29.0

LTM (ours) 44.4 35.4 32.7
Relative improvement 7.8% 10.6% 12.8%

the COCO training set and evaluated on the val set. The
detection performance was reported on the test-dev set.

Following the settings in [3], [5], [6], [29], each input im-
age was resized to have a shorter side of 800 pixels while the
longer side less than 1333 pixels. We also followed previous
settings to perform horizontal flipping on randomly selected
images for data augmentation. When multi-scale training
was performed, input images were jittered over scales {640,
672, 704, 736, 768, 800} at the shorter side. In addition to
single-scale testing performance, we also reported the multi-
scale testing performance by fusing the detection results on
multi-scale images with sizes {400, 500, 600, 700, 900,1000,
1100, 1200}.

When training LTM detectors, we set the bias initializa-
tion to b = − log ((1− ρ)/ρ) with ρ = 0.02 for the last
convolutional layer of the classification subnet. With the
initialization, training was carried out using the synchro-
nized SGD over 8 GPUs with a total of 16 images per mini-
batch (two images per GPU). Unless otherwise specified,
all detectors were trained for 90k iterations with an initial
learning rate 0.01, which was then respectively decreased by
a magnitude at 60k and a magnitude again at 80k iterations.
A weight decay of 0.0001 and a momentum of 0.9 were used.
Following [29], group normalization [38] was employed for
LTM-AF in classification and localization subnets.

4.2 Learning-to-match

As analyzed in Section 1, hand-crafted anchor assignment
often fails when facing: (1) multiple objects in crowded
scenes; and (2) slender objects with acentric features. The
detectors based on the learning-to-match method can effec-
tively alleviate these issues.
M+ and M−. In Table 1, positive anchor match-

ing (M+) improved the detection AP by 3.0% (35.7% to
38.7%) which was a significant margin for the challeng-
ing object detection task. Using negative anchor matching
(M−) further improved the performance by 0.5% (38.7%
to 39.2%), demonstrating its effectiveness to filter out noisy
anchors/features. The RetinaNet (K anchors) was an im-
proved baseline detector using top-K anchors to supervise
the detector without anchor matching. Unfortunately, there

[0, 10] [11, 20] [21, 30] [31, inf)
number of objects per image

25

30

35

40

45

AP
 (%

)

RetinaNet
LTM

Fig. 5. Performance comparison on object crowdedness (number of
objects per image) on COCO val set. With higher crowdedness, LTM
demonstrates larger advantage over the baseline method (RetinaNet).

was no improvement over RetinaNet (baseline), which val-
idated that the major improvement was from learning-to-
match.

Object Crowdedness. In Fig. 5, we compared the per-
formance of the baseline method and that of LTM(M+) in
scenarios of various object crowdedness. As the number of
objects in each image became larger, the advantage of LTM
over RetinaNet became more significant. This demonstrated
that our detector, with positive anchor matching, can select
optimal anchors for objects in crowded scenes [39]. Table 2
included the relative performance improvements under dif-
ferent object crowdedness. Crowdedness is calculated as
the largest IoU between an object with its nearest objects.
According to the object crowdedness, the test images of MS
COCO were divided into three groups: sparse, medium and
dense. The range of crowdedness of the three groups is [0.0,
0.2], [0.2, 0.5], [0.5, 1.0], respectively. It can be seen that
images of higher object crowdedness have larger relative
improvements.

To further validate the effectiveness of our approach in
crowded scenarios, we tested it on SKU110K [40], which is
a dataset specified for densely packed objects in supermar-
kets. By simply plugging the LTM module to the RetinaNet
baseline, we observed 5.6% (52.6% vs. 47.0%) performance
improvement, which is a significant margin.

Acentric Features. From the confidence evolution of
matched anchors in Fig. 6 one can see that LTM flexibly
selected the most representative features to represent the
object of interest. This endowed detectors the flexibility over
objects of acentric features. In Fig. 7, the fitted lines clearly
show that LTM has larger performance improvements over
object categories of larger aspect ratios. In Fig. 8, one can see
that the LTM detector significantly outperformed the Reti-
naNet baseline over the categories of slender objects. Par-
ticularly, for the categories “snowboard”, “tie”,“keyboard”,
and “couch”, LTM outperformed the baseline method up
to 5-10% APs, which are large margins with respect to the
challenging object detection task.

Compatibility with NMS. To qualitatively assess the

Authorized licensed use limited to: THE LIBRARY OF CHINESE ACADEMY OF SCIENCES. Downloaded on May 08,2021 at 00:52:54 UTC from IEEE Xplore.  Restrictions apply. 



0162-8828 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3050494, IEEE
Transactions on Pattern Analysis and Machine Intelligence

9

An
ch

or
 c

en
te

r
  1st epoch

An
ch

or
 b

ox
He

at
m

ap
  5th epoch   9th epoch Final epoch

(a)

He
at

m
ap

LTM

RetinaNet

(b)

Fig. 6. Anchor confidence evolution when training the LTM detector (a). First row: dots denote anchor centers. Darker (redder) dots indicate higher
confidence. Second row: Darker boxes indicate anchors of higher confidence. Third row: the heatmaps are calculated by accumulating anchor
confidence. (b) Anchor confidence evolution when training the RetinaNet detector.

TABLE 3
The effect of IoU for anchor bag construction on COCO val set. S and
K mean randomly selecting S anchors from the top-K anchors with

respect to their IoUs with objects.

S K AP AP50 AP75 APS APM APL
40 40 38.4 57.4 41.1 20.5 41.9 50.7
40 80 37.2 56.5 39.5 20.0 39.8 51.0
40 120 36.0 55.8 37.8 19.0 38.6 49.3
40 160 34.9 54.8 36.6 18.4 37.3 48.9

compatibility of anchors’ predictions with NMS, we defined
the NMS Recall (NRτ ), which denotes the ratio of the recall
rates after and before NMS with the IoU threshold τ . Higher
NRτ indicates smaller error of NMS, which causes accurate
bounding box predictions be suppressed. Following the
COCO-style AP metric [37], NR was defined as the averaged
NRτ where τ changes from 0.50 to 0.90 with an interval of
0.05. In Table 4, we compared RetinaNet with LTM in terms
of their NRτ . LTM reported significantly higher NRτ (84.3%
vs. 81.3%), which means better compatibility with NMS.
This validated that the detection customized likelihood
(defined in Section 3.1) can guarantee joint optimization of
classification and localization.

4.3 Ablation Studies

To quantitatively investigate the effect of the learning-to-
match method, we conducted ablation studies on COCO val

TABLE 4
Comparison of NMS recall (%) on COCO val set.

Detector NR NR50 NR60 NR70 NR80 NR90
RetinaNet [5] 81.3 97.6 94.9 87.0 72.1 49.5

LTM(M+) [13] 83.8 99.2 97.5 89.5 74.3 53.1
LTM 84.3 98.5 96.5 89.8 76.2 55.2

TABLE 5
Ablation study of hyper-parameters on COCO val set. (a) Number of

anchors (K) in each anchor bag. (b) Regularization factor β for
regression loss (Eq. 1).

(a)

K AP AP50 AP75
10 37.3 56.2 39.5
20 38.1 56.8 40.9
30 38.4 57.5 41.2
40 38.4 57.6 41.2
50 38.2 57.2 41.0

(b)

β AP AP50 AP75
0.3 37.9 57.8 40.2
0.4 38.1 57.5 40.7
0.5 38.4 57.6 41.2
0.6 38.2 57.0 40.7
0.7 38.4 57.0 40.9

set using ResNet-50 as the backbone network.
Hyper-parameters. Beyond the hyper-parameters from

the baseline detector, our detector has two important hyper-
parameters introduced. The first one is the anchor bag
size K, which determines how many anchors/points are
included in each anchor/point bag. As shown in Table 5a,
The highest AP performance (38.4%) was achieved when
K = 30 ∼ 40 while marginal performance drops occurred
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Fig. 7. Performance improvement with respect to object aspect ratios of LTM (a) and LTM-AF (b). Each point in the figure denotes an object category.
The fitted lines clearly show that LTM has larger performance improvements over object categories of larger aspect ratios.

TABLE 6
Comparison of training time, detection speed and AP on COCO

test-dev set. Multi-scale training is not used.

Backbone Detector Training time FPS AP

ResNet-50
RetinaNet [5] 5.02h 9.8 35.7

LTM 5.27h 9.1 39.2
LTM-AF 4.89h 9.8 39.1

ResNet-101
RetinaNet [5] 6.96h 8.0 37.8

LTM 7.26h 7.9 41.1
LTM-AF 6.75h 8.5 41.0

given K = 10, 20 or 50. This indicated that our approach
is not sensitive to the number of anchors/points used for
anchor construction. As long as a bag covers the optimal
anchor, the learning-to-match process can select the optimal
anchor despite of noise anchors.

The second hyper-parameter is the regression factor β,
which is defined in Eq. 1 to balance the importance of
object classification and object localization. In Table 5b,
we reported the performance given different values of β.
The highest AP (38.4%) was achieved at β = 0.5, whereas
AP50 and AP75 reached the highest values at 0.3 and 0.5,
respectively. This indicated the positive correlation between
the regression accuracy and the regression factor.

Bag Construction. Top-K anchors were used for bag
construction according their spatial alignment (IoU) with
the objects. To verify the effect of spatial alignment, we
tested the detection performance under different K val-
ues, Table 3. Smaller K implies anchors of better spatial
alignment. We randomly select S = 40 anchors from the
top-K anchors for bag construction. Experiments show that
smaller K corresponds to higher performance, validating
that spatial alignment (IoU) remains an important factor for
object-feature correspondence.

Anchor-free Detector. As a general learning-to-match
method, LTM was applied on the anchor-free detector which
performs object detection in a per-pixel prediction fash-
ion [29]. Following the way to construct anchor bags, we
construct feature point bags, where each pixel is a feature
point. Experimentally, the number of feature points in each

bag was set to K = 40 and the regularization factor for
bounding box regression was set to β = 5.5. In Table 6, it
can be seen that the LTM-AF detector achieved comparable
performance with the LTM detector.

Consistency. Our proposed detectors consistently im-
proved the detection performance on deeper or shallower
backbone networks in both anchor-based and anchor-free
frameworks. With ResNet-50 and ResNet-101, LTM and
LTM-AF respectively outperformed the baseline method by
3.5%, 3.4%, 3.3%, and 3.2%, Table 6, indicating the consistent
effectiveness of our proposed approach.

Efficiency. The LTM module requires negligible com-
putational cost as no additional architecture or parameter
introduced during the training and inference phases. During
the training phase, it solely introduced two additional an-
chor matching losses compared with the baseline RetinaNet
method. The learning-to-match method starts by using a
bag of anchors/features to train the detector while ends by
matching anchors of high confidence. In Table 6, the training
time and inference speed were compared. All detectors were
trained using 8× Tesla V100 GPUs and tested using a single
GTX 1080Ti GPU with CUDA 10. It can be seen that LTM
achieved significant performance gains with negligible com-
putational cost. The LTM-AF detector achieved comparable
performance gains and a higher detection speed.

4.4 Performance
In Table 7, the proposed LTM and LTM-AF detectors were
evaluated on advanced backbone networks by training 2×
iterations (180K) and using scale jitter. The experiments
were carried out on COCO test-dev set and compared with
state-of-the-art two-stage and one-stage detectors.

The LTM detector achieved state-of-the-art performance,
outperforming most one-stage and two-state detectors in-
cluding FasterRCNN+FPN, Libra RCNN, IoU-Net, and Tri-
dentNet. With a ResNeXt-101 backbone, it reported new
state-of-the-art detection performance 44.9%. The perfor-
mance further improved to 46.3% when multi-scale testing
was used. It outperformed the state-of-the-art CenterNet
and TridentNet detectors using HourGlass-104 backbone.
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Fig. 8. Category-wised performance and improvement of LTM (a) and LTM-AF (b) on the COCO test-dev set using ResNet-50. For the categories
about slender objects, e.g., “snowboard”, “toaster”, “tie” and “keyboard”, LTM and LTM-AF significantly improved the baseline method (RetinaNet).

CenterNet used a backbone network with significantly more
network parameters than that of our backbone network
(210.1 M vs. 96.9 M). In that case, the detection speed of
LTM (8.2 FPS) is more than two times higher than that of
CenterNet (3.3 FPS). With the same ResNet101 backbone,
LTM outperformed the Cascade R-CNN detector which
used multi-stage prediction correction.

The LTM-AF detector also achieved state-of-the-art per-
formance. With the ResNet-101 backbone, it respectively
outperformed recent anchor-free detectors FCOS and FSAF
by 2.5% (43.4% vs. 40.9%) and 1.9% (43.4% vs. 41.5%) which
are significant margins. When considering the AP75 metric
with ResNet-101, LTM-AF respectively outperformed the
FCOS and FSAF by 1.6%(46.6% vs. 45.0%) and 2.6%(46.6%
vs. 44.0%). For APL it respectively outperformed the FCOS
and FSAF by 3.3%(54.9% vs. 51.6%) and 3.6%(54.9% vs.
51.3%). With all the experiments in Table 7, it is concluded
that LTM-AF reported new state-of-the-art (43.4% with
ResNet-101 and 44.9% with ResNeXt-101) for anchor-free
detectors, as well as filling the gap between anchor-based
and anchor-free detectors.

Comparisons of detection results in Fig. 9 show that LTM
and LTM-AF detected more slender objects and objects of
partial occlusion. The most representative features of these

objects bias from their geometric centers, which challenged
the IoU-based anchor assignment but can be well handled
by the learning-to-match mechanism.

5 CONCLUSION

We proposed the elegant and effective learning-to-match
(LTM) approach for visual object detection. LTM updated
the hand-crafted anchor assignment to “free” object-anchor
correspondence by formulating detector training as a maxi-
mum likelihood estimation (MLE) framework. In the frame-
work, we proposed positive and negative anchor matching
functions, based on which we improved the performance
of object detection, in striking contrast with the baseline
detector. We extended the learning-to-match method from
anchor-based detectors to anchor-free detectors and closed
the performance gap between the anchor-based and anchor-
free detectors. We further provided theoretical analysis
about the anchor-matching functions from a perspective
of generative linear models. The learning-to-match method
and anchor-matching mechanism provide fresh insights for
object representation and object localization problems in the
deep learning framework.
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TABLE 7
Performance comparison with state-of-the-art detectors on MS COCO test-dev dataset. LTM(M+) uses only positive anchor matching while LTM
uses both positive and negative anchor matching. ‘multi-scale’ denotes input images are jittered over scales and results are fused when testing.

Method Backbone Anchor Free FPS AP AP50 AP75 APS APM APL
Multi-stage detectors
Faster R-CNN+++ [34] ResNet-101 34.9 55.7 37.4 15.6 38.7 50.9
Faster R-CNN w FPN [3] ResNet-101 9.9 36.2 59.1 39.0 18.2 39.0 48.2
GA-Faster-RCNN [25] ResNet-50 Y 9.4 39.8 59.2 43.5 21.8 42.6 50.7
IoU-Net [21] ResNet-101 40.6 59.0 - - - -
RPDet [32] ResNet-ResNet101 Y 10.0 41.0 62.9 44.3 23.6 44.1 51.7
Libra R-CNN [41] ResNet-101 9.5 41.1 62.1 44.7 23.4 43.7 52.5
Libra R-CNN [41] ResNeXt-101-64x4d 5.6 43.0 64.0 47.0 25.3 45.6 54.6
Cascade R-CNN [42] ResNet-101 8.0 42.8 62.1 46.3 23.7 45.5 55.2
TridentNet [43] ResNet-101 2.7 42.7 63.6 46.5 23.9 46.6 56.6
Single-stage detectors
RetinaNet [5] ResNet-101 8.0 39.1 59.1 42.3 21.8 42.7 50.2
GA-RetinaNet [25] ResNet-50 Y 10.8 37.1 56.9 40.0 20.1 40.1 48.0
FCOS [29] ResNet-101 Y 9.3 41.5 60.7 45.0 24.4 44.8 51.6
FCOS [29] ResNeXt-101-64x4d Y 5.4 44.7 64.1 48.4 27.6 47.5 55.6
FSAF [44] ResNet-101 Y 7.1 40.9 61.5 44.0 24.0 44.2 51.3
FSAF [44] ResNeXt-101-64x4d Y 4.2 42.9 63.8 46.3 26.6 46.2 52.7
CornerNet [30] HourGlass-104 Y 3.1 40.5 56.5 43.1 19.4 42.7 53.9
CenterNet [8] HourGlass-104 Y 3.3 44.9 62.4 48.1 25.6 47.4 57.4
Ours
LTM(M+) [13] ResNet-101 8.0 43.1 62.2 46.4 24.5 46.1 54.8
LTM ResNet-101 8.2 43.8 62.7 47.1 25.1 46.6 55.2
LTM ResNeXt-101-64x4d 5.1 44.9 64.7 48.3 26.9 47.8 55.8
LTM(multi-scale) ResNeXt-101-64x4d 1.6 46.3 65.9 50.3 30.5 48.9 57.4
LTM-AF ResNet-101 Y 8.3 43.4 63.7 46.6 24.3 46.9 54.9
LTM-AF ResNeXt-101-64x4d Y 5.2 44.9 65.5 48.1 26.1 48.4 56.7
LTM-AF(multi-scale) ResNeXt-101-64x4d Y 1.7 46.3 66.7 50.1 30.1 49.0 57.3

APPENDIX: DERIVATION OF MATCHING FUNCTION

We derive the anchor matching functions, Eqs. 10 and 11, by
reformulating anchor matching as latent variable learning
and converting the likelihood calculating with a generalized
linear model (GLM).

Latent Variable Model. Given the labels of anchor bags,
the anchor matching problem (Section 3.1.3) can be formu-
lated as a latent variable model, where a latent variable
Zi ∈ {1, 2, · · · , j, · · · } is defined to indicate the instan-
taneously matched anchors in bag Ai. The solution for
the latent variable should guarantee

∑
j p(Zi|Ai; θ) = 1

and p(Yi, Zi = 1|Ai; θ) = p(yij = Yi|Ai; θ). In that case
the likelihood of anchor bags is approximated by that of
anchors, as

p(Yi|Ai; θ) =
∑
Zi

p(yij = Yi|Ai; θ)p(Zi|Ai; θ), (15)

which defines an anchor matching model in terms of bag
likelihood, anchor likelihood, and the latent variable.

The latent variable Zi in Eq. 15 requires to be simulta-
neously learned with network parameter θ. This procedure
can be formulated as an Expectation-Maximization (EM)
algorithm consist of E-steps and M-steps is employed, as

(E-step:) For each bag Ai, we define the distribution
for Zi as

Q(Zi) =
p(Yi, Zi|Ai; θ)∑
Zi
p(Yi, Zi|Ai; θ)

.

(M-step:) With all bags, we maximize the likelihood as

θ = argmax
θ

∑
i

∑
Zi

Q(Zi) log p(Yi, Zi|Ai; θ),

where the likelihood for the bag Ai can be converted to

Pi(θ) =
∏
Zi

p(Yi, Zi|Ai; θ)Q(Zi). (16)

Generalized Linear Model (GLM). GLM defines a fam-
ily of models used to solve the problem that given input
features and model parameters. The learning objective fol-
lows an exponential family distribution parameterized with
η [45]. In CNNs, the commonly used activation function,
i.e., the sigmod function, is a GLM, as

φ = 1/(1 + e−η), (17)

where φ denotes likelihood output by the detector. In what
follows, we show that the anchor matching functions de-
fined in Eqs. 10 and 11 can be derived based on Eq. 17.

We define the likelihood of an anchor bag as

φj = p(Yi, Zi = j|Ai; θ), (18)

and
q(y) = [Q(Zi = 1), · · · , Q(Zi = j), · · · ]T

as the target distribution, Eq. 16, is converted to

p(y;φ1, · · · , φj , · · · ) =
∏
j

φ
q(y)j
j ,

which defines a multinomial distribution in the exponential
family, as

p(y;φ1, · · · , φj , · · · ) = exp
(
[log φ1 · · · log φj · · · ]T q(y)

)
= eη0 exp

(
ηT q(y)

)
,

by defining η0 + ηj = log φj and according to Eq. 18, we
have

φj = p(Yi, Zi = j|Ai; θ) = eη0eηj . (19)
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(a)

(b)

Fig. 9. Examples of object detection results on COCO val set. (a) Comparison of detection results by RetinaNet (blue boxes) and LTM (red and blue
boxes). (b) Comparison of detection results by RetinaNet (blue boxes) and LTM-AF (red and blue boxes). A score threshold of 0.7 is used to display
the detection results on images. It can be seen that LTM and LTM-AF detected more slender objects and objects of partial occlusion, particularly
when multiple object come together. It also can be seen that LTM and LTM-AF achieved similar detection results, which show that the performance
gap between anchor-based and anchor-free detectors are largely closed. (Best viewed in color and with zoom)

Anchor Matching Functions. According to Eq. 17, the likelihood of a positive anchor bag is

p(yij = Yi|Ai; θ) =
1

1 + e−ηij
. (20)
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According to Eq. 19 and Eq. 20, we have

p(Zi = j|Ai; θ) =
p(Yi, Zi = j|Ai; θ)
p(yij = Yi|Ai; θ)

=
eη0eηij

1
1+e−ηij

.

According to the latent variable definition, the value of η0
must satisfy

∑
j p(Zi = j|Ai; θ) = 1. Thus we have∑

j

eη0eηij

1
1+e−ηij

= 1,

and
eη0 =

1∑
j(1 + eηij )

.

When anchor j in anchor bag Ai is matched, we have ηj =
ηij . Upon substitution of η0 in Eq. 19 and calculating eηij =
φij

1−φij according to Eq. 17, we have

p(Yi = 1, Zi = j|Ai; θ) =
eηij∑

j(1 + eηij )

=

φij
1−φij∑
j

1
1−φij

.

(21)

According to Eq. 20, the likelihood of a negative anchor
bag is

p(yij = Yi|Ai; θ) = 1− 1

1 + e−ηij
=

1

1 + eηij
. (22)

Following the derivation above, we can conclude

p(Yi = 0, Zi = j|Ai; θ) =
eηij∑

j e
ηij (1 + eηij )

=

φij
1−φij∑
j

φij
(1−φij)2

.

(23)

By summing on j, we derive the anchor matching function
from Eq. 21 and Eq. 23, as

p(Yi = 1|Ai; θ) =
∑
j

p(Yi = 1, Zi = j|Ai; θ)

=

∑
j

φij
1−φij∑

j
1

1−φij
,

(24)

and

p(Yi = 0|Ai; θ) =
∑
j

p(Yi = 0, Zi = j|Ai; θ)

=

∑
j

φij
1−φij∑

j
φij

(1−φij)2
.

(25)

Eq. 24 and Eq. 25 are exactly same as Eq. 10 and Eq.
11. As GLMs [45], the anchor matching functions convert
the likelihood of an anchor bag as a combination of a set
of observed anchors. In this way, the learning procedure
comprehensively considers all the anchors in each positive
bag by summarizing theirs likelihood to pursue the optimal
anchors and network parameters. This facilities learning
more representative features for object detection while pre-
vent getting stuck into local solutions from the perspective
of sufficient statistics.
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[12] O. Maron and T. Lozano-Pérez, “A framework for multiple-
instance learning,” in Adv. in Neural Inf. Process. Syst. (NeurIPS),
1997, pp. 570–576.

[13] X. Zhang, F. Wan, C. Liu, R. Ji, and Q. Ye, “FreeAnchor: Learning
to match anchors for visual object detection,” in Adv. in Neural Inf.
Process. Syst. (NeurIPS), 2019.

[14] L. Liu, W. Ouyang, XiaogangWang, P. Fieguth, J. Chen, X. Liu,
and M. Pietikainen, “Deep learning for generic object detection: A
survey,” Int. J. Comput. Vis., vol. 128, no. 2, pp. 261–318, 2020.

[15] S. Agarwal, J. O. du Terrail, and F. Jurie, “Recent advances in object
detection in the age of deep convolutional neural networks,”
arXiv:1809.03193, 2018.

[16] Z. Zou, Z. Shi, Y. Guo, and J. Ye, “Object detection in 20 years: A
survey,” arXiv:1905.05055, 2019.

[17] G. Ghiasi, T. Lin, and Q. V. Le, “NAS-FPN: learning scalable
feature pyramid architecture for object detection,” in Proc. IEEE
Int. Conf. Comput. Vis. Pattern Recognit. (CVPR), 2019, pp. 7036–
7045.

[18] T. Yang, X. Zhang, Z. Li, W. Zhang, and J. Sun, “Metaanchor:
Learning to detect objects with customized anchors,” in Adv. in
Neural Inf. Process. Syst. (NeurIPS), 2018, pp. 320–330.

[19] C.-Y. Fu, W. Liu, A. Ranga, A. Tyagi, and A. C. Berg, “Dssd:
Deconvolutional single shot detector,” arXiv:1701.06659, 2017.

[20] J. Redmon and A. Farhadi, “YOLO9000: better, faster, stronger,” in
Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit. (CVPR), 2017,
pp. 6517–6525.

[21] B. Jiang, R. Luo, J. Mao, T. Xiao, and Y. Jiang, “Acquisition of
localization confidence for accurate object detection,” in Proc.
Europ. Conf. Comput. Vis. (ECCV), 2018, pp. 784–799.

Authorized licensed use limited to: THE LIBRARY OF CHINESE ACADEMY OF SCIENCES. Downloaded on May 08,2021 at 00:52:54 UTC from IEEE Xplore.  Restrictions apply. 



0162-8828 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3050494, IEEE
Transactions on Pattern Analysis and Machine Intelligence

15

[22] T. Vu, H. Jang, T. X. Pham, and C. Yoo, “Cascade rpn: Delving into
high-quality region proposal network with adaptive convolution,”
in Adv. in Neural Inf. Process. Syst. (NeurIPS), 2019, pp. 1430–1440.

[23] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei,
“Deformable convolutional networks,” in Proc. IEEE Int. Conf.
Comput. Vis., 2017, pp. 764–773.

[24] S. Zhang, L. Wen, X. Bian, Z. Lei, and S. Z. Li, “Single-shot
refinement neural network for object detection,” in Proc. IEEE Int.
Conf. Comput. Vis. Pattern Recognit. (CVPR), 2018, pp. 4203–4212.

[25] J. Wang, K. Chen, S. Yang, C. C. Loy, and D. Lin, “Region proposal
by guided anchoring,” in Proc. IEEE Int. Conf. Comput. Vis. Pattern
Recognit. (CVPR), 2019, pp. 2965–2974.

[26] J. Choi, D. Chun, H. Kim, and H.-J. Lee, “Gaussian yolov3: An
accurate and fast object detector using localization uncertainty for
autonomous driving,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
2019, pp. 502–511.

[27] K. Oksuz, B. C. Cam, S. Kalkan, and E. Akbas, IEEE Trans. Pattern
Anal. Mach. Intell.

[28] X. Zhou, C. Yao, H. Wen, Y. Wang, S. Zhou, W. He, and J. Liang,
“EAST: an efficient and accurate scene text detector,” in Proc. IEEE
Int. Conf. Comput. Vis. Pattern Recognit. (CVPR), 2017, pp. 2642–
2651.

[29] Z. Tian, C. Shen, H. Chen, and T. He, “Fcos: Fully convolutional
one-stage object detection,” arXiv:1904.01355, 2019.

[30] H. Law and J. Deng, “Cornernet: Detecting objects as paired
keypoints,” in Proc. Europ. Conf. Comput. Vis. (ECCV), 2018, pp.
765–781.
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