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Abstract— Weakly supervised object detection (WSOD) is a
challenging task that requires simultaneously learning object
detectors and estimating object locations under the supervision of
image category labels. Many WSOD methods that adopt multiple
instance learning (MIL) have nonconvex objective functions and,
therefore, are prone to get stuck in local minima (falsely localize
object parts) while missing full object extent during training.
In this article, we introduce classical continuation optimization
into MIL, thereby creating continuation MIL (C-MIL) with the
aim to alleviate the nonconvexity problem in a systematic way.
To fulfill this purpose, we partition instances into class-related
and spatially related subsets and approximate MIL’s objective
function with a series of smoothed objective functions defined
within the subsets. We further propose a parametric strategy to
implement continuation smooth functions, which enables C-MIL
to be applied to instance selection tasks in a uniform manner.
Optimizing smoothed loss functions prevents the training proce-
dure from falling prematurely into local minima and facilities
learning full object extent. Extensive experiments demonstrate
the superiority of CMIL over conventional MIL methods. As a
general instance selection method, C-MIL is also applied to super-
vised object detection to optimize anchors/features, improving the
detection performance with a significant margin.

Index Terms— Continuation optimization, multiple instance
learning (MIL), object detection, weakly supervised detection.

I. INTRODUCTION

WEAKLY supervised object detection (WSOD), which
requires solely binary annotations indicating whether

a class of objects exists in images or not during training,
has attracted increasing attention [1]–[6]. Compared with
fully supervised object detection that requires labor-intensive
bounding-box annotations, WSOD significantly reduces the
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workload of data annotation. With WSOD, people can leverage
rich images with tags on the internet to learn object-level mod-
els and, thereby, convert human-supervised object detection to
Webly supervised object modeling.

Nevertheless, WSOD remains an open problem when con-
sidering its performance is still far behind that of supervised
detection methods (∼20% on the PASCAL VOC detection
benchmark) [7]–[10]. The challenge lies in that both detection
models and object locations are latent and require to be
estimated at the same time.

Multiple instance learning (MIL) has been a major WSOD
method [11], [12], which treats labeled images as bags and
estimates latent object locations (instances) when learning
object detectors. However, it is observed that various MIL
models [7], [13] are prone to learn object parts while missing
full object extent, particularly in the early training epochs. The
nature behind the phenomenon is the nonconvexity of MIL’s
objective function, which results in selecting discriminative
object parts for image classification while missing full object
extent for localization [see Fig. 1(a)]. Researchers have tried
solving this problem by introducing regularization terms, e.g.,
spatial priori [8], [11], [14], [15], min-entropy [7], object-
specific pixel gradient [16], reinforcement region search-
ing [17], and online instance refinement [3], [12], [18]. Despite
the progress, the local minimum problem remains not explored
from the perspective of optimization.

In this article, we introduce classical continuation optimiza-
tion [19] to MIL and propose continuation MIL (C-MIL)1 to
systematically explore the nonconvexity problem. In C-MIL,
the object proposals in an image are regarded as instances,
while images are regarded as bags of instances. Different from
conventional MIL methods that select the most discriminative
instance during training, C-MIL selects the discriminative
instance subsets where instances are class-related and spatially
related, i.e., having similar object class scores and overlapping
with each other [see Fig. 1(b)].

We accordingly define a parametric strategy to implement
continuation optimization, which enables C-MIL to be applied
to instance selection tasks in a uniform manner. Specifically,
we implement C-MIL by introducing a continuation parameter
that increases from 0 to 1 during the training procedure. Based
on the continuation parameter, instances in an image are parti-
tioned into subsets. When the continuation parameter equals 0,

1Code for C-MIL is available at github.com/WanFang13/C-MIL
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Fig. 1. Comparison of optimization procedures of (a) MIL and (b) C-MIL. MIL falls into local minima and falsely localizes an object part, which is caused
by the nonconvex loss function. By constructing a series of functions, which can approximate the original objective/loss function but are easier to optimize,
C-MIL alleviates the nonconvexity problem, pursues a stronger global minimum, and localizes the full object extent. (Best viewed in color.)

all instances in the image are partitioned into a single subset.
At this moment, the objective function of C-MIL is equivalent
to that of the image classification method [20] and is convex.
When the continuation parameter equals 1, each instance
subset contains a single instance. At this moment, the objective
function of C-MIL degenerates to that of MIL. By continually
increasing the continuation parameter, the instance subsets
gradually decrease in size from containing all instances to a
single instance.

Within the instance subsets, we construct a series of func-
tions that can approximate the original objective function
but are easier to optimize, Fig. 1(b). Training such objective
functions prevents the model from falling prematurely into
the local optimum and, therefore, approaches the global opti-
mum. Consequently, instances in most discriminative subsets
are selected, and the ones in less discriminative subsets are
suppressed. The selected instance subsets are capable of col-
lecting various object parts, which are combined to discover
stable semantic extremal regions (SSERs) indicating full object
regions, Fig. 1(b).

C-MIL was first proposed in our CVPR oral article [21] and
is promoted to a general learning method by defining general
objective functions in this full version. C-MIL is applied to
not only instance selection under weakly supervised settings
but also anchor/feature optimization under fully supervised
settings. The contributions of this work include the following.

1) We propose a C-MIL method, which, by defining a
series of smoothed objective functions to approximate
MIL’s objective function, systematically alleviates the
nonconvexity problem of MIL.

2) We propose a parametric strategy to connect smoothed
objective functions with instance subsets, which enables
C-MIL to be applied to instance selection tasks in a
uniform manner.

3) We apply C-MIL to WSOD, with the aim to prevent
the training procedure from falling prematurely into
local minima and facilitate discovering full object extent.
We also apply C-MIL to supervised object detection to

select optimal anchors/features and improve the adapt-
ability of detectors.

4) We achieve significant performance gains for WSOD
and supervised object detection on commonly used
benchmarks, including PASCAL VOC and MS-COCO.

II. RELATED WORK

In this section, we first review major approaches for weakly
supervised methods. We then review continuation and smooth-
ing methods for nonconvex optimization.

A. Weakly Supervised Method

Considering the unavailability of object locations, WSOD
approaches leveraged latent variable learning or MIL to esti-
mate object locations. Recently, the MIL network, which inte-
grates MIL with deep feature learning, has attracted increased
attention.

1) Latent Variable Learning: Latent variable learning was
based on a hypothesis that a class of instances shapes a
single compact cluster, while the negative ones form multiple
diffuse clusters. Under such a hypothesis, Wang et al. [4], [22]
calculated cluster labels of object proposals using probabilistic
Latent Semantic Analysis (pLSA) and proposed a statistics-
based approach to determine positive categories. Bilen and
Song [2], [13] proposed leveraging latent variable clustering
to discover object regions, object-part configurations, and
subcategories, which were further used to learn detection
models. Ye et al. [3] proposed a progressive latent model to
discover object locations and learn detectors with progressive
optimization.

Various latent ariable methods require solving the noncon-
vexity problem and, therefore, suffering from local minimum,
which implies that they could falsely localize object parts or
multiple objects. To solve this problem, object symmetry and
class mutual exclusion information [1], convex clustering [13],
and model smoothing [5] were introduced to the optimization
functions as regularization.
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2) MIL: As a major line of the WSOD method, MIL
first decomposes each training image to a set of region
proposals (instances). During training, each set of region
proposals is treated as a “bag,” and the true object loca-
tions are learned by iteratively performing instance selec-
tion and detector estimation. MIL works in a way similar
to the expectation-maximization algorithm, which simultane-
ously labels instances and estimates models. Nevertheless,
with a nonconvex objective function, MIL is often puzzled
by the problem of local minima, particularly when facing a
large solution space [7], [13].

To alleviate this problem, some approaches [5], [13], [22]
used clustering as preprocessing or used bag splitting [23]
to reduce the solution space. In multifold MIL [24], [25],
the training set was split to “multifolders,” where cross
validation was carried out to alleviate the nonconvexity
problem.

3) MIL Network: MIL networks refer to the deep neural
networks (DNNs) fused with MIL, which selects instances
and estimates detection models when learning feature repre-
sentations [11]. While taking advantage of integrating feature
learning with detector estimation, MIL networks inherited
the nonconvexity drawback of MIL methods. To solve this
problem, spatial regularization [11], context information [8],
[14], min-entropy regularization [7], [26], object pixel gradient
[16], and segmentation collaboration [15], [27], [28] were
introduced to MIL networks.

In [15], semantic segmentation was introduced as a network
branch within cascaded convolutional networks, which opti-
mized instance selection and semantic segmentation in a two-
stage iteration manner. In [8] and [14], context information
was incorporated into networks to identify instances that are
supported by and standing out from surrounding regions.
In [7], [26], the clique-based min-entropy model was proposed
as a regularization term to alleviate localization random-
ness when selecting instances. In [7] and [26], object-aware
instance labeling was explored for accurate object localization
by considering the completeness of instances.

In MIL Networks, classifier refinement strategies [7], [12],
[15], [18], [30] were often used to produce high-quality
instances that were treated as pseudo-objects to refine the
instance classifier. The MELM method [7] used a recurrent
learning algorithm to integrate image classification with object
detection and then progressively optimize the classifiers and
detectors. Online instance classifier refinement (OICR) [31]
and proposal clusters (PCL) [31], [32] further improved object
localization based on the observation that iterative generation
of proposal clusters [31] could prevent networks from concen-
trating on object parts.

Despite noticeable progress, existing approaches remain not
alleviating the local minimum problem from a perspective of
optimization, which hinders the theoretical advance of weakly
supervised learning. In this article, we introduce classical
continuation optimization into MIL, thereby creating C-MIL,
with the intention of alleviating the nonconvexity problem in
a systematic way. Our research starts from improving object
localization in WSOD, while it could also be applied to general
latent variable learning problems.

B. Nonconvex Optimization

1) Continuation Methods: Continuation methods [33], [34]
were proposed to deal with the complex optimization problem.
In these methods, the objective function of the target task was
often smoothed or approximated to multiple easier objective
functions. These procedures were performed by introduc-
ing a continuation parameter. During model optimization,
the continuation parameters were monotonically increased or
decreased, and the optimization problem was accordingly con-
verted to a sequence of subproblems, which finally converged
to the problem of interest. These methods have achieved
great success when facing optimization problems involving
nonconvex objective functions with multiple local minima.
Curriculum learning [35] shared a similar principle by defining
a series of easy-to-difficult subtasks (or subdistributions),
which finally converged to the task of interest.

2) Smoothing: Smoothing was a commonly used method
in optimization [36] and has been integrated with deep neural
networks. In [37], [38], a smoothing method that improved
the nonsmooth ReLU activation for better optimization was
proposed. In [39], “mollifiers” were introduced to smooth the
loss function by gradually increasing its nonlinearity during
model optimization, which can converge to stronger global
minima [40]. In [41], entropy was introduced to reduce the
randomness of object localization, while the essence is to
smooth the loss function with an entropy function.

In this research, we propose a parametric strategy to
continuously smooth objective functions over class-related
and spatially related instance subsets. The proposed strategy
enables C-MIL to be a general learning method, which,
by specifying smoothed functions, can be applied to general
instance selection tasks in image domains.

III. C-MIL

In this section, we first revisit the classical MIL method
and clarify the procedure about simultaneously estimating
instance labels and learning classifiers under the supervision of
instance bag labels [42]. We then analyze the nonconvexity of
MIL’s objective function. Based on the analysis, we introduce
continuation optimization to create C-MIL, with the aim to
relax the nonconvex objective function and improve instance
selection and detection training.

A. MIL Revisit

Instead of receiving a set of instances (region proposals)
that are individually labeled, an MIL learner receives a set
of labeled bags (images), each containing multiple instances.
In the simple case of multiple-instance binary classification,
a bag is labeled negative if all the instances in it are negative.
On the other hand, a bag is labeled positive if at least one
instance in it is positive. From a collection of labeled bags,
MIL tries to estimate a classifier that can discriminate bags
and correctly select positive instances.

Let x ∈ X denote a bag of instances and X a set of
bags for training. w denotes model parameters. y ∈ {+1,−1}
denotes the label of bag x . y = +1 indicates a positive bag
that contains at least one positive instance, while y = −1
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Fig. 2. Continuation optimization of C-MIL. MIL’s nonconvex objective
function is approximated by a series of smoothed functions that are easier
to be optimized. The smoothed functions are defined within instance subsets,
which are partitioned with a parametric strategy. During training, C-MIL traces
the series of smoothed functions from a starting point (w0, 0) to a solution
point (w∗, 1), which facilities pursuing a global optimal solution. (Best viewed
in color.)

indicates a negative bag where all instances are negative. xi

and yi (requires to be estimated), respectively, denote instances
and instance labels in bag x , where i ∈ {1, 2, . . . , N} and N
denotes the number of instances.

With MIL, an instance classifier is learned to select the top-
scored instance xi∗ from each instance bag as

xi∗ = arg max
xi

f (xi , w) (1)

where f (·) is the instance classifier parameterized with w,
which computes the classification score about each positive
class. Accordingly, the objective function of MIL is formulated
as

{w∗, xi∗ } = arg min
w,xi

L(X , w)

= arg min
w

∑
x∈X

max(0, 1 − y max
xi

f (xi , w)) (2)

which defines a hinge-loss function for instance selection
and classifier learning. Combined with a deep network,
the instance classifier f (·) selects top-scored instances to opti-
mize the classification of bags, as well as updating the instance
classifier (network parameter w) using an SGD algorithm.

B. Convexity Analysis

It is notable that the maximum of multiple convex functions
is convex. The summation term in (2) is convex when y = −1.
However, when y = +1, (2) can be described as the maximum
of multiple concave functions and, therefore, is nonconvex.
Theoretically, such a nonconvex function has objective local
minima, as shown in the first curve of Fig. 2. Once the instance
classifier learned with a nonconvex loss function selects false
positives, the learning procedure will be misled by them,
particularly in early training epochs.

Based on the analysis, we require elaborating the following
two problems: 1) how to plausibly relax the nonconvex func-
tion so that we can approach the globally optimal solution

Algorithm 1 Parametric Instance Subset Partition
Input: Instance bag x and continuation parameter λ.
Output: Instance subsets xI (λ).
1: while x �= ∅ do
2: xî = arg maxi f (xI (λ), w) ;
3: xI (λ) = {xî};
4: for k = 1, . . . , |x | do
5: if IoU(xk, xî) > λ then
6: xI (λ) = xI (λ) ∪ xk , x = x \ xk

7: end if
8: end for
9: I ← I + 1

10: end while

and 2) how to reasonably perform instance selection so that
multiple instances can be collected to optimize the classifier.

C. Continuation Optimization

1) Formulation: We propose the continuation optimization
method and target at solving above problems in a systematic
way. Specifically, we introduce a series of smoothed objective
functions L̃(X , w, λ), which can approximate MIL’s objective
function L(X , w) [see (2)] but are easier to optimize, Fig. 2.
The smoothed objective functions are parameterized by λ. Dur-
ing learning, we trace the smoothed functions from a starting
point (w0, 0) to a solution point (w∗, 1), where w0 is the
solution of L̃(X , w, 0) and w∗ the solution of L̃(X , w, 1). This
procedure, termed continuation optimization, is formulated as

{w0, . . . , wλ . . . , w∗} =
{

arg min
w0

L̃(X , w, 0), . . . ,

arg min
wλ

L̃(X , w, λ), . . . ,

arg min
w∗

L̃(X , w, 1)
}
. (3)

In (3), the first objective function is convex when λ = 0 and
returns to the original objective function [see (2)] when λ = 1.

2) Parametric Instance Partition: To materialize the
smoothed objective functions, we further propose a parametric
strategy to partition each instance bag into instance subsets and
define smoothed functions within such subsets. Specifically,
a bag x = {x1, x2, . . . , xN } is first partitioned into subsets
x = ∪λ xI (λ) (see Fig. 2). I (λ) is the index set for an instance
subset. The partition of subsets is controlled by the continua-
tion parameter λ according to the following conditions:{

∪λ xI (λ) = x

xI (λ) ∩ xI 
(λ) = ∅ for ∀I (λ) �= I 
(λ).
(4)

According to (4), all subsets for a bag x are minimum
sufficient cover to the bag. The subsets should have the
properties that, when λ = 0, a bag x is partitioned into a
single subset that includes all instances; when λ = 1, the bag
x is partitioned into multiple subsets, each of which contains
a single instance; when λ continuously increases from 0 to
1, the subset gradually dwindles from the instance bag to a
single instance.
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Fig. 3. Comparison of selected instances by C-MIL and MIL. With MIL, the discriminative instance is selected, and thereby, an object part is activated.
With C-MIL, the discriminative instance subset is selected, and the full object extent is activated. (Best viewed in color.)

3) Smoothed Objective Function: Based on subset partition,
an instance subset selection function, C(xi , w, λ), is defined
to replace the second max(·) in (2). The objective function
defined in (2) is accordingly updated to a smoothed one as

{w∗, xI ∗(λ)} = arg min
w,xI (λ)

L̃(X , w, λ)

= arg min
w

∑
x

max(0, 1− yC(x, w, λ)) (5)

where C(x, w, λ) is defined as

C(x, w, λ) = S({ f (xI (λ), w)|xI (λ) ⊆ x}) (6)

where f (xI (λ), w) calculates the scores of all instances in
a subset xI (λ) and average them to a subset score. S(·) is
a pooling operation, e.g., average pooling, which converts
instance subset scores to image classification scores. The
pooling operation S(·) works in a way like median filtering,
with which the function defined by (5) is smoother than that
by (2).

4) Model Optimization: Equation (3) defines a series of
smoothed objective functions for continuation optimization.
In the deep learning framework, each function is differential
and can be optimized with the SGD algorithm. When opti-
mizing the model parameter w, the continuation parameter λ
changes from 0 to 1, and the smoothed objective functions
are optimized one by one. When λ = 0, all instances in the
bag are partitioned into a single subset, and C(·) calculates
the average scores of all instances in a bag. Accordingly, (5)
is the maximum of two linear terms and, therefore, is convex
and most smoothed. When λ = 1, each subset contains a
single instance, and C(·) outputs the score of the instance.
In this case, (5) is not smoothed, i.e., it deteriorates to MIL’s
objective function (see Fig. 2).

IV. WEAKLY SUPERVISED OBJECT DETECTION

WSOD defines a task to learn object detector, while,
solely, image category labels are available. During the training
procedure, images are treated as bags, and region proposals
generated by Selective Search [43] are treated as instances.
The instances selected by C-MIL are used as pseudo-ground
truths to learn an object detector.

A. Instance Selection With C-MIL

All the instances (object proposals) are partitioned into
subsets according to the parametric partition strategy. To fulfill
this purpose, we first sort the instances in each bag using
their classification scores f (xi , w). The following two steps
(detailed in Algorithm 1) are iteratively performed to define
instance subsets: 1) from the instance set where instances
have not been partitioned into any subset, select the top-
scored instance xi∗ and construct an instance subset with
it and 2) from the instance set where instances have not
been partitioned into any subset, select the instances whose
similarity with xi∗ is not less than the continuation parameter
λ and include it into the subset constructed in step 1).

Given a continuation parameter 0 ≤ λ ≤ 1, the smoothed
function C(x, w, λ) for instance selection is specified as

C(x, w, λ) = max
I (λ)

f (xI (λ), w). (7)

Accordingly, the continuation loss function defined in (5) is
specified as

{w∗, xI ∗(λ)} = arg min
w,xI (λ)

L̃(X , w, λ)

= arg min
w

∑
x

max(0, 1− yi max
I (λ)

f (xI (λ), w)).

(8)

To optimize the objective/loss function, C-MIL activates
instances in the subset xI (λ) equally to learn the model para-
meters. As mentioned in Section III-C2 that the instances in a
subset are spatially close to each other, C-MIL is able to collect
object parts to activate the full object regions (see Fig. 3).
The continuation parameter λ increases from 0 to 1 during
optimization. When it equals to 0, each bag x contains only
one subset that includes all instances. The term maxi f (xi , w)
of (2) then can be simplified to

∑
i f (xi , w). Accordingly, this

term becomes convex, and therefore, (2) is convex. When λ
equals to 1, the number of subsets equals to that of instances in
the bag, i.e., each subset includes only one instance. Therefore,
(5) returns back to the loss function of MIL [see (2)]. When
0 < λ < 1, each subset contains multiple instances, and
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Fig. 4. Implementation of WSOD with C-MIL, where continuation instance selection is implemented atop a deep network. In the forward procedure, C-MIL
selects positive instances from subsets and uses them as pseudo-objects for detector estimation. In the backpropagation procedure, the instance selector and
object detectors are jointly optimized. C is the number of object categories.

the loss function falls between the smoothed function and the
original loss function (see Fig. 2).

B. Detector Training

WSOD is implemented with a two-branch network structure
(see Fig. 4), where Selective Search [43] is employed to extract
region proposals (instances) for each image. Following Fast
RCNN [10], convolutional layers are used to extract image
features, while an ROI-Pooling layer and two fully connected
layers are added atop the convolutional layers to extracted
features for instances. During detector training, continua-
tion instance selection is performed by C-MIL implemented
atop the last convolutional layer. Selected positive/negative
instances are used to learn an object detector.

For WSOD, we propose a continuation strategy to pre-
dict reliable instances while learning detectors. Specifically,
the instances of each bag are partitioned into positives and
negatives according to the continuation parameter λ. For the
selected instance subset xi(λ)∗ and the top scored instance xi∗

in it, instances in the bag are labeled as positives or negatives
based on their spatial distances, as yi = +1 if IoU(xi, xi∗ ) ≥
1 − λ/2 or yi = −1 if IoU(xi , xi∗) ≤ λ/2, where IoU
computes the Intersection of Union over two instances.

During detector training, when λ changes from 0 to 1,
the threshold 1 − λ/2 decreases from 1 to 0.5, while the
threshold λ/2 increases from 0 to 0.5.

With the change of λ, more and more instances are labeled
as positives/negatives by the detector gz(xi , wg), which grad-
ually learned with the cross-entropy loss. In the training pro-
cedure, the instance selector and object detector are optimized
with network propagation, along with network parameters
updated iteratively (see Fig. 4).

During inference, the learned detector is used to predict the
scores for each instance, and nonmaximum suppression (NMS)
is performed to remove overlapping instances.

V. SUPERVISED OBJECT DETECTION

Beyond WSOD, C-MIL can also be applied to improve the
detection performance of supervised object detectors. In what

follows, we first revisit RetinaNet [44], a representative one-
stage detection method. We then apply C-MIL to ReinaNet
for anchor/feature selection during detector training.

A. RetinaNet Revisit

A RetinaNet detector is made up of a backbone network
and two subnets: one for object classification and the other for
object localization. The feature pyramid network (FPN) is used
as the backbone network for feature extraction. From each fea-
ture map in the feature pyramid, a classification subnet predicts
category probabilities, while a box regression subnet predicts
object locations using anchor boxes as the reference locations.
Each anchor corresponds to a feature vector on the convo-
lutional feature map. Considering the extreme imbalance of
foreground-background classes, presented as positive–negative
anchors after anchor-object matching, the focal loss [44] is
adopted to prevent the vast number of easy negatives from
overwhelming the detector during training.

For a special class of object, let xi denote an anchor in
a training image. The label yi ∈ {+1,−1} of an anchor is
empirically determined according to its overlap with an object.
An anchor is positive, i.e., yi = +1, if its IoU with a ground-
truth bounding-box is larger than a threshold (e.g., 0.5). It is a
negative anchor, i.e., yi = −1, when the IoU is smaller than a
threshold (e.g., 0.4). The remaining anchors are ignored. The
labeled anchors are then used to supervise detection network
training as

w∗ = arg min
w,xi

L(X , w)

= arg min
w,xi

∑
x

∑
i

Lc(xi , w) + δ(yi)Ll(xi , w) (9)

where Lc(·) and Ll(·), respectively, denote the classification
loss and localization (bounding-box regression) loss. In Reti-
naNet, Lc(·) is defined as a focal loss (FL) and Ll Smooth-
L1 loss(SL) [44]. δ(y) = 1 if y = +1; otherwise, δ(y) = 0,
which means that the second (localization) term of (9) is only
valid for positive anchors.

During network training, each anchor independently
supervises the learning for object classification and object
localization, without considering whether classification and
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Fig. 5. Implementation of supervised object detection with C-MIL, where anchors are partitioned into subsets and continuation anchor selection is implemented
atop a deep network.

Fig. 6. Illustration of the anchor bag partition when applying C-MIL to
supervised object detection.

localization modules are compatible (simultaneously achieve
high scores) on assigned anchors. This could cause failure
detections when anchors of accurate localization but lower
classification confidence are suppressed by the following
NMS procedure.

B. Anchor Selection With C-MIL

To alleviate the drawbacks of independent anchor/feature
optimization, we propose using C-MIL to select an optimal
anchor for each ground-truth object when training detectors.
The improved detector is referred to as RetinaNet-C-MIL, as
shown in Fig. 5.

To train RetinaNet-C-MIL, we first construct an anchor bag
x for each object. Fig. 6 illustrates the process of anchor bag
(instance subset or clique) partition when applying C-MIL to
supervised object detection. The anchors are first partitioned
into anchor bags or background anchors according to their
IoUs with the ground-truth boxes. Specifically, the anchors
whose IoUs with the closest ground-truth box b are larger
than a threshold (top-k) will be partitioned into the anchor
bag of b, and the anchors that do not belong to any anchor
bags are partitioned into background anchors. To evaluate
the localization confidence, we define the localization loss
as f l

(
xI (λ), w

) = eL
l(xi ,w). During training, we evaluate the

classification and localization scores, f c(xi , w) and f l(xi , w),
of each anchor bag x . The detection score f (xi , w) for each
anchor is computed as f (xi , w) = f c(xi , w)× f l(xi , w). Such
scores are used for anchor selection, as well as guiding the
calculation of classification and localization loss (see Fig. 5).
According to (6), we specify the following continuation func-
tion for anchor selection as

C(x, w, λ) = 1

|x |
∑

xI (λ)∈x

f
(
xI (λ), w

)
(10)

and define the continuation anchor selection procedure as

{w∗, xI ∗(λ)} = arg min
w,xI (λ)

L̃(X , w, λ)

= arg min
w,xI (λ)

∑
x

L̃+(x, w, λ)+ L̃−(x, w, λ) (11)

where

L̃+(x, w, λ) = max(0, 1− y
1

|x |
∑
I (λ)

f
(
xI (λ), w

)
(12)

and

L̃−(x, w, λ) = F L
(

f c(xi , w), yi |xi ∈ x−
)

(13)

where x− contains the anchors that do not belong to any
positive bags. yi = −1 for all xi ∈ x−. As illustrated in Fig. 6,
the optimal anchor for object detection will be selected by
(12), while the background anchors are suppressed by (13).

C. Detector Training

According to the idea of continuation optimization, we grad-
ually change λ from 0 to 1 during detector training. When
λ = 0, all anchors in an anchor bag are used to classify
and localize an object. When λ = 1, the size of anchor bags
reduces to a single anchor, and an optimal anchor is selected
for the object. During the feedforward procedure, we calculate
the classification and localization scores of each anchor with
f c(·) and f l(·). A set of anchors (or a single optimal anchor)
is selected to minimize the loss defined in (11). During the
backpropagation procedure, network parameters are updated
using an SGD algorithm under the supervision of selected
anchors.

The testing procedure of RetinaNet-C-MIL is exactly the
same as RetinaNet. We use the learned network parameters to
predict classification scores and object bounding boxes, which
are fed to an NMS procedure for object detection. As C-MIL
is only applied in the detector training procedure, RetinaNet-
C-MIL has negligible computation cost overhead.

VI. EXPERIMENTS

As a general method for instance section and model learn-
ing, C-MIL was validated on WSOD and supervised object
detection. In each task, we first introduced experimental set-
tings and then validated the proposed C-MIL method. We also
reported the performance of detectors learned by C-MIL and
compared them with state-of-the-art detectors.
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Fig. 7. Five functions defined to calculate continuation parameter.

A. Weakly Supervised Object Detection

For WSOD, we evaluate C-MIL on the PASCAL VOC
2007 and 2012, and MS-COCO 2014 data sets. We use
mean average precision (mAP) [45] and correct localization
(CorLoc) [46] as the evaluation metrics.

1) Experimental Settings:
a) Data Sets: The PASCAL VOC 2007 data set contains

9963 images of 20 object categories that are split into two
sets: 5011 for trainval and 4952 for test . The PASCAL VOC
2012 data set is made up of 22 531 images of 20 object cate-
gories that are split into two subsets: 11 540 for trainval and
10 991 for test . The MS-COCO 2014 data set has 80 object
categories, with challenging aspects including dense and small
and occluded objects.

b) CNN models: We implement C-MIL with two CNN
models (VGGF and VGG16) that are pretrained on the
ILSVRC 2012 data set. VGGF [47] contains five convolutional
layers and three fully connected layers, while VGG16 [20]
contains 13 convolutional layers and three fully connected
layers. For both VGGF and VGG16, we replaced the last
max pooling layer with the ROI-pooling layer, as in [10].
We remove the FC8 layer in both CNN models and add the
C-MIL module.

c) Object proposals: We used Selective Search [43] to
extract about 2000 object proposals from each image. As in
Fast RCNN, the fast setting was adopted to generate proposals.
Small proposals whose width or height is less than 20 pixels
were removed.

d) Learning settings: We resized the input images into
five scales {480, 576, 688, 864, 1200} with respect to their
larger side (height or width), as in [11], [12], [14], and [15].
For a training image, it was randomly resized to one of the
scales, while it was randomly flipped. Accordingly, during
the test, each image was augmented into ten images. The
output scores of each proposal from the ten augmented images
were averaged. For recurrent learning, SGD was used with a
momentum of 0.9, a weight decay of 5e-4, and a batch size
of 1. The model iterated 20 epochs where the learning rate
was 5e-3 for the first 15 epochs and 5e-4 for the last five
epochs. The NMS method used in this article follows existing
works [10], [48]. The score and IoU thresholds of NMS are
respectively set as 0.005 and 0.3.

e) Baseline: The implementation of WSOD is illustrated
in Fig. 4, where two network branches, respectively, perform

Fig. 8. Change of image classification and object localization performance
on the trainval set of the PASCAL VOC 2007 data set with VGG16 during
training. In the early epochs, MIL achieves higher classification performance.
In the later epochs, the classification performance of C-MIL catches up with
that of MIL, and localization performance becomes higher than that of MIL.

TABLE I

COMPARISON OF FUNCTIONS TO CALCULATE THE CONTINUATION PARA-
METER λ. DETECTION AND LOCALIZATION PERFORMANCE (%) ON THE

PASCAL VOC 2007 DATA SET WITH VGGF

image classification and object detection. Given region propos-
als as inputs, the classification branch estimates the image clas-
sification score and instance confidence using C-MIL defined
in Section III. The instance confidence is then transferred to
the object detection and mask prediction branches in a feed-
forward manner for object detector training (see Section III).

2) Continuation Method: On the VOC 2007 data set,
we investigated how to control the parameter λ for continua-
tion optimization on instance selection and detector estimation.

a) Continuation parameter: To implement continuation
optimization during training, “Linear,” “Piecewise Constant,”
“Sigmod,”“Exp,” and “Log” functions (see Fig. 7) were used to
generate continuation parameter λ. λ monotonically increases
according to either of the defined functions, while the instance
subsets gradually dwindle to a single instance according to
Algorithm 1. As shown in Table I, with continuation opti-
mization, the detection and localization performance were
improved by 1.1%–4.7% and 1.4%–4.5%, respectively, which
fully demonstrated the effectiveness of the proposed paramet-
ric continuation strategy.

Table I indicates that the “Log” function achieved the
best detection mAP and localization CorLoc. When using the
“Log,” λ increased rapidly in the initial epochs and slowed
down in the last epochs (see Fig. 7). This matches the training
procedure: in the initial epochs, the instance subsets are large
so that various object parts can be collected and fully utilized
to fine-tune the network; in the later epochs, the instance
subsets become stable, and it required to meticulously select
instance for detector estimation.
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Fig. 9. Illustration of Stable Semantic Extremal Regions (SSERs). MIL activated the discriminative regions but missed the full object extent. In contrast,
C-MIL discovered SSERs indicating full object extent. The continuation parameter λ of C-MIL increased from 0 to 1 along with the training procedure (from
epoch 0 to epoch 20). In the last column, the yellow and green boxes, respectively, denote ground truths and localization results. The heat maps are calculated
by accumulating the scores of region proposals. (Best viewed in color.)

TABLE II

ABLATION STUDIES OF C-MIL. DETECTION PERFORMANCE (MAP%) ON

THE PASCAL VOC 2007 DATA SET WITH VGGF

b) Continuation optimization: The ablation experimental
results for continuation instance selection and detector esti-
mation are shown in Table II. The usage of the continuation
instance selection improved the performance of baseline by
3.0% (from 36.0% to 39.0%); the usage of the continua-
tion detector estimation further improved the performance of
baseline by 1.4% (from 36.0% to 37.4%). Combining two
modules improved the performance by 4.7% (from 36.0% to
40.7%), which clearly showed the effectiveness of continuation
optimization.

Fig. 8 shows the visualization of the evolution of the image
classification and object localization performance during train-
ing. In the initial training epochs, the performance of MIL
is higher than that of C-MIL. In the later epochs, the clas-
sification performance gap between MIL and C-MIL gradu-
ally decreased, while the localization performance of C-MIL
became higher than that of MIL. This is because the main loss
of MIL is image classification loss, while it did not optimize
for object localization. Consequently, it tended to select object

proposals that were discriminative for image classification but
missed to localize full objects. In contrast, C-MIL optimized
both image classification and object localization by learning
instance subsets, where instances are spatially related and
class-related. C-MIL was able to avoid the optimization getting
stuck in local minima.

c) Training time: We test the training time of the baseline
and the proposed C-MIL on VOC 2007 with VGG16 on
an NVIDIA GTX 1080Ti GPU. It, respectively, takes the
baseline 8.1 h and C-MIL 8.7 h for training. Compared with
the baseline method, the computational cost of C-MIL is
moderate considering the challenging aspects of WSOD and
the significant performance improvement.

3) Stable Semantic Extremal Regions: To analyze and
understand the continuation optimization, we visualized the
activation of learned subsets during the training procedure
(see Fig. 9). It shows that, when λ increases from 0 to 1,
the activated region of instance subsets gradually dwindles. In
the initial training epochs, subsets were defined as large to
collect as many objects/parts as possible. In the later training
epochs, the region activated by the subsets stopped dwindling
and tended to form stable activation regions around object
boundaries. We termed these regions stable semantic extremal
regions (SSERs), which, often, turns out to be full object
extent.

The emergence of SSERs indicated that C-MIL
continuously suppressed backgrounds while activating
object regions during learning. Since the semantics inside and
outside the object boundary are not continuous, the instance
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Fig. 10. Object detection examples on the PASCAL VOC 2007 data sets. Yellow bounding boxes denote ground-truth annotations, and red boxes denote
detection results. (Best viewed in color.)

TABLE III

DETECTION PERFORMANCE (%) ON THE VOC 2007 TEST SET. COMPARISON OF C-MIL WITH THE STATE OF THE ARTS

subsets gradually dwindle to eliminate the backgrounds until
it reaches the object boundary. The procedure is related to that
of maximally stable extremal regions (MSERs) [50] in a way.
The difference is that the MSERs are defined for gray-level
stable regions while SSERs for semantic stable regions.

4) Performance:
a) Pascal VOC: Table III shows the performance of

C-MIL and a comparison with the SOTA methods on the
PASCAL VOC 2007 data set. It shows that C-MIL achieved
40.7% and 50.5% detection performances with the VGGF and
VGG16 models, respectively. With VGGF, C-MIL, respec-
tively, outperformed WCCN [15], OICR [12], and MELM

[7] by 3.4% (from 37.3% to 40.7%), 2.8% (from 37.9% to
40.7%), and 2.3% (from 38.4% to 40.7%). With VGG16,
it outperformed the SOTA WeakRPN [49], PCL [31], and
MELM [7] approaches by 6.2% (from 44.3% to 50.5%),
4.7% (from 45.8% to 50.5%), and 3.2% (from 47.3% to
50.5%) respectively, which were significant margins for the
challenging WSOD task. Detector examples by C-MIL are
shown in Fig. 10.

We further retrained a Fast-RCNN detector using the learned
pseudo-objects as the ground truth and achieved 53.1% mAP
(see Table III), which outperformed the state-of-the-art OICR-
Ens., PCL-Ens., and WeakRPN-Ens. by 6.1% (from 47.0%
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TABLE IV

DETECTION AND LOCALIZATION PERFORMANCE (%) ON THE VOC
2012 DATA SET USING VGG16. COMPARISON OF C-MIL WITH THE

STATE OF THE ARTS

TABLE V

LOCALIZATION PERFORMANCE (%) ON THE VOC 2007 trainval SET.
COMPARISON OF C-MIL WITH THE STATE OF THE ARTS

to 53.1%), 4.1% (from 48.8% to 53.1%), and 2.7% (from
50.4% to 53.1%). Specifically, the detection performance for
“aeroplane” (+3.2%), “bird” (+5.8%), “cat” (+3.5%), and
“train” (+4.5%) significantly improved over the WeakRPN-
Ens. approach. Table IV is the detection results of C-MIL
and SOTA methods on the VOC 2012 data set with VGG16.
For object detection, C-MIL, respectively, outperformed the
WeakRPN [49], PCL [31], and MELM [7] by 5.9% (from
40.8% to 46.7%), 6.1% (from 40.6% to 46.7%), and 4.3%
(from 42.4% to 46.7%).

Tables IV and V show the object localization performance
of C-MIL and comparisons with the SOTA methods. It shows
that C-MIL, respectively, outperformed the WeakRPN [49] and
PCL [31] by 2.5% (from 64.9% to 67.4%) and 3.0% (from
64.4% to 67.4%) on VOC 2012 1.2% (from 63.8% to 65.0%)
and 2.0% (from 63.0% to 65.0%) on VOC 2007.

b) MS-COCO: To validate the effectiveness of C-MIL
on a large-scale data set, we conducted experiments on MS-
COCO 2014 and reported the results in Table VI. It can
be seen that C-MIL with a VGG16 network significantly
outperformed the MIL-based approach (WSDDN [11]). With
C-MIL, we set a solid baseline for weakly supervised object
detection on the large-scale MS-COCO data set. On the other
hand, we much realize that the detection performance on the
MS-COCO data set remains low. The reasons are twofold:
1) the region proposals have a very low recall rate of 57%,
which means that more than 40% objects are missed in this
step and 2) objects in MS-COCO are much smaller on average
than those in VOC 2007, which poses additional challenges
to object detectors.

TABLE VI

DETECTION PERFORMANCE (%) ON MS-COCO 2014

Fig. 11. Evolution of continuation anchor selection when training a
supervised object detector. In the first iteration, all anchors/features in a bag
have similar scores and are all selected. When training proceeds, some anchors
output higher scores than others and are selected. In the last iteration, a single
top-scored anchor is selected in each bag. The heat map is calculated by
summarizing anchor scores. (Best viewed in color.)

B. Supervised Object Detection

For supervised object detection, the PASCAL VOC
2007 data set was used for the ablation study, while the MS-
COCO object detection data set was used for performance
comparison. For all the experiments, average precision (AP)
[45] was used as the evaluation metric.

1) Experimental Settings: We utilized ResNet-50 and
ResNet-101 with FPN as backbone networks. The VOC 2007
trainval and VOC 2012 trainval sets were used to train
detectors and VOC 2007 test for evaluation. The detectors
were trained in a single GPU with a batch size of 4 and
an image size of 500. The initial learning rate was set to
0.005 and decreased by a factor of 10 after 30k and 40k for
the 45k setting. For the MS-COCO data set, the train set
was used to train a detector, and the test-dev set is used for
testing. We trained the model with eight GPUs. Each GPU
contained a minibatch of two images with a size of 800. The
initial learning rate was set to 0.01 and decreased by a factor
of 0.1 after 60k and 80k for the 90k setting. The score and IoU
thresholds of NMS are, respectively, set as 0.05 and 0.5, which
are the same as those in RetinaNet [44]. The anchor generation
settings were the same as those of RetinaNet [44], i.e., nine
anchors with three sizes {20, 21/3, 22/3} and three aspect ratios
{1 : 2, 1 : 1, 2 : 1} for each pixel on the feature maps. Across
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Fig. 12. Detection examples on MS-COCO 2017. Blue boxes denote objects detected by both RetinaNet and RetinaNet-C-MIL. Red boxes denote objects
detected by RetinaNet-C-MIL but missed by RetinaNet. RetinaNet-C-MIL detected more slender objects and objects of occlusion. (Best viewed in color.)

TABLE VII

DETECTION PERFORMANCE (%) ON PASCAL 2007 WITH RESNET-50

feature levels, the anchors cover the scale range from 32 to
813 pixels with respect to the input image. The synchronized
stochastic gradient descent (SGD) was adopted for network
optimization. The weight decay of 0.0001 and the momentum
of 0.9 are used. A linear warm-up strategy was adopted in
the first 500 iterations. We set the regularization factor of
positive instances as 0.75 experimentally. To determine anchor
number (k) for each anchor bag, we empirically tested k =
40, 50, and 60 and achieved 48.9%, 49.5%, and 49.2% APs,
respectively. We, thus, choose 50 anchors in the following
experiments.

2) Continuation Anchor Selection: In Table VII, we tested
the detection performance by using MIL to select anchors.
RetinaNet-MIL improved the AP from 42.4% to 44.7%, which
validated that anchor selection can optimize feature represen-
tation for detection. When using C-MIL to select anchors,
RetinaNet-C-MIL further improved the AP from 44.7% to
49.5%.2 The large performance gain validated the effectiveness
of C-MIL for continuation anchor selection. The nature behind
the good performance is that C-MIL defines a learning-to-
match mechanism for feature-object correspondence, which
pursued optimal features to explain a class of objects in terms
of both classification and localization. As shown in Fig. 11,
in the initial iterations, all anchors/features in a bag had similar
scores and were all selected. When training proceeded, some
anchors of high scores were selected. In the last iteration,
a single top-scored anchor was selected in each bag.

2RetinaNet-C-MIL* uses a smoothed function defined with (11), while
RetinaNet-C-MIL uses an additional Gaussian weight in (11). The Gaussian
weight of an anchor is calculated on IoU between the anchor and the top
scored anchor, as e−I oU(xi ,x∗i )2/λ2

.

3) Performance: On VOC 2007, with a ResNet-50 back-
bone, RetinaNet-C-MIL improved the baseline from 42.4%
to 45.9% with 3.5% performance gain (see Table VII).
On MS-COCO, with a ResNet-50 backbone, RetinaNet-C-
MIL improved the baseline from 35.7% to 38.8% with 3.1%
performance gain (see Table VIII), which is a significant
margin for the challenging object detection task. Compari-
son of detection results in Fig. 12 shows that RetinaNet-C-
MIL detected more slender objects and objects of occlusion.
The most representative features of such objects often bias
from their geometric centers, which challenged the IoU-
based anchor assignment in RetinaNet but can be well han-
dled by the instance (anchor) selection mechanism defined
in C-MIL.

In Table VIII, RetinaNet-C-MIL was compared with the
state-of-the-art one- and two-stage detectors on the MS-
COCO test-dev set. For a fair comparison, we rescaled
the images so that their shorter sides are 800 pixels and
the longer sides not more than 1333 pixels. For one-stage
methods, we compared state-of-the-art detectors, including
FoveaBox [51], FSAF [52], and FCOS [53]. With the ResNet-
50 backbone, RetinaNet-C-MIL outperformed the state-of-the-
art approach FCOS by 1.7%. With the ResNet-101 backbone,
RetinaNet-C-MIL achieved 43.2% AP, which, respectively,
outperformed RetinaNet by 4.1% and FCOS by 1.5%. As a
one-stage detector, RetinaNet-C-MIL outperformed state-of-
the-art two-stage detectors, such as IoU-Net [54] and cas-
cade RCNN [55]. It is noteworthy that the performance
gains were achieved without any additional computational
cost, i.e., it simply modified the training procedure of
detectors.
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TABLE VIII

PERFORMANCE (%) COMPARISON WITH THE BASELINE DETECTOR AND STATE-OF-THE-ART DETECTORS ON MS-COCO 2017

VII. CONCLUSION

WSOD is an important yet challenging task. A major
challenging aspect of WSOD lies in the nonconvexity of
the objective function, which makes the learning procedure
getting stuck in local minima. In this article, we proposed
an elegant method, referred to as C-MIL, and alleviated the
nonconvexity problem in a systematic way. C-MIL defined a
series of smoothed functions to relax the original objective
function based on parametric instance partition. C-MIL can
gradually discover stable semantic extremal regions (SSERs)
for accurate object localization. C-MIL was also applied to
anchor/feature selection in supervised object detection. Sig-
nificant performance gains over baseline methods and state-
of-the-arts validated the effectiveness of C-MIL for general
instance selection problems.

APPENDIX

THEORETICAL ANALYSIS OF C-MIL

For simplicity, denote G(w) = L(X , w, 0) and F(w) =
L(X , w, 1). The smooth function can be defined using a
convex homotopy as

L(X , w, λ) = (1− λ)G(w)+ λF(w) (14)

which traces an implicitly defined curve c(s) ∈ L−1(0) from a
starting point (w0; 0) to a solution point (w; 1). G is required
to be convex. In what follows, it requires to calculate the
critical points of a smooth mapping f : RN → R, where N
is the dimension of w. The numerical solution then consists
of tracing a smooth curve

c(s) = (λ(s),w(s)) ∈ L−1(0) (15)

with starting point c(0) for some given critical point a of G,
and starting tangent ċ(0) = (λ̇(0), ẇ(0)), with ẇ(0) > 0. The
aim is to trace the curve c until the homotopy level λ = 1
is reached and a critical point of F is obtained. According to
Sard’s theorem [19], if all critical points of F are regular, then
it is possible to make a choice of G such that zero is a regular
value of L. Accordingly, a theorem [56] is defined as follows.

Theorem 1: Let F and G be smooth functions and L be the
convex homotopy defined in (14), which has zero as a regular

value. Let c(s) defined in (15) be a smooth curve obtained by
defining the initial value problem as

ċ(s) = σ t (L
(c(s))
c(0) = (0, a) (16)

where σ ∈ {+1,−1} is a fixed orientation. Suppose that λ(s)
is increasing for s ∈ [0, s], λ(s) = 1, and the critical point
b = w(s) of F is regular. The critical points a and b of G
and F have the same Morse index.

One issue of Theorem 1 is that it is difficult to guarantee
curve c having a monotone λ coordinate and reaching λ = 1
given a finite arc length. In [58] and [59], it has been observed
that it is possible to extract a piecewise smooth curve, which
monotonically increases in terms of λ. Considering that deep
learning models typically have a large number of parameters,
i.e., N is considerably large, it is difficult to directly achieve
the numerical solution for Theorem 1. We, therefore, propose
to empirically enumerate the possible curves (see Fig. 7) in the
context of the monotony of λ and approximate the optimization
for Theorem 1 in a small searching space. This makes it
possible to implement the continuation methods to optimize
nonconvex deep models.
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