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Abstract— The performance of offline learned pedestrian
detectors significantly drops when they are applied to video
scenes of various camera views, occlusions, and background
structures. Learning a detector for each video scene can avoid
the performance drop but it requires repetitive human effort
on data annotation. In this paper, a self-learning approach is
proposed, toward specifying a pedestrian detector for each video
scene without any human annotation involved. Object locations
in video frames are treated as latent variables and a progressive
latent model (PLM) is proposed to solve such latent variables.
The PLM is deployed as components of object discovery, object
enforcement, and label propagation, which are used to learn the
object locations in a progressive manner. With the difference of
convex (DC) objective functions, PLM is optimized by a concave-
convex programming algorithm. With specified network branches
and loss functions, PLM is integrated with deep feature learning
and optimized in an end-to-end manner. From the perspectives
of convex regularization and error rate estimation, detailed
optimization analysis and learning stability analysis of the pro-
posed PLM are provided. The extensive experiments demonstrate
that even without annotation involved the proposed self-learning
approach outperforms weakly supervised learning approaches,
while achieving comparable performance with transfer learning
approaches.

Index Terms— Pedestrian detection, self-learning, progressive
latent model, difference of convex.

I. INTRODUCTION

W ITH widespread use of surveillance cameras, the need
for automatically detecting objects, e.g. pedestrians,

has significantly increased. Recent methods [1]–[4] have
achieved encouraging progress for detecting objects in images,
given large-scale training sets and high-capacity deep learning
models [5]. However, their performance in video scenes is
limited for the following reasons: 1) Supervised learning
of detectors for different scenes requires repeated human
effort on data annotation; 2) Offline-trained detectors unavoid-
ably degrade with changes in the scene or camera [6], [7];
3) Scene specific cues including camera viewpoints, object
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occlusions, and background structures are not incorporated
into the detectors [8]–[11].

To robustly detect objects in various of video scenes,
transfer learning [6], [7], [12] can be used to adapt the
learned detectors to new scenes without using additional data
annotation [13]–[15]. Semi-supervised learning uses a small
number of instances to initialize detectors and incrementally
improves the detectors by mining samples in new domains
[7], [16], [17]. However, transfer learning is challenged
when the object appearance in the target domains is signif-
icantly different with that in the source domains; while semi-
supervised models might drift away from the intended aims
given noisy or unrelated samples [7]. Most importantly, both
methods require partial instance annotations (object bounding
boxes), and therefore, do not fully reduce human supervision.

In this paper, we discuss the possibility of self-learning
pedestrian detectors in dynamically changing scenes, e.g. a
city square, to build a pedestrian detection system in a fully
unsupervised manner. The inputs of self-learning include video
sequences where pedestrians are the dominant moving objects
and additional negative images randomly collected from the
Web, Fig. 1. The aim is to simultaneously learn pedestrian
detectors and pedestrian locations under the hypothesis that
positive objects (pedestrians) share an appearance model while
the negatives are diverse and do not share any appearance
model [18]–[20].

Pedestrian locations in video frames are treated as
latent variables which are solved with a progressive latent
model (PLM). Accordingly, the self-learning approach is
deployed as components of object discovery, object enforce-
ment, and label propagation, which are optimized in a
progressive manner. Given the prior that the presence of
pedestrian in video frames of significant motion and the
absence of pedestrian in negative images, the image-level label
is estimated. With estimated image-level labels, object discov-
ery is implemented with a latent SVM [21], which outputs
appearance models and coarsely localizes objects by selecting
region proposals to minimize image-level classification error.
With localized objects, a spatial regularization procedure is
explored to reducing the localization ambiguity and discrim-
inate object parts with the objects themselves. A label prop-
agation component is further used to discover harder-positive
instances and enables the self-learning approach to find com-
plex sample domains comprising multi-posture and multi-view
pedestrians [22].
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Fig. 1. Proposed self-learning framework. Given a video where pedestrians are dominant moving objects, our proposed approach progressively constructs
a scene-specific detector using a self-learning procedure. In the learning procedure, each positive image is decomposed into a “bag” of proposals, and the
object discovery, object enforcement, and label propagation procedures are iteratively applied to identify true positives from the proposals.

The self-learning approach was first proposed in our CVPR
2017 paper [23], and is updated to processing deep learning
features. With the added optimization analysis of the progres-
sive latent model (PLM) and integration of the PLM with
an deep learning framework, the self-learning approach is
comprehensively presented. The contributions of this paper
include: (1) A self-learning pedestrian detection framework,
which is deployed as iterative procedures of object discov-
ery, object enforcement, and label propagation, posing a
new direction in the field of (unsupervised) object detection;
(2) A progressive latent model (PLM), which uses spatial
regularization and label propagation to reduce ambiguity of
discovered samples, as well as addressing the stability of self-
learning. (3) A deep PLM, which integrates the progressive
latent model with a deep learning framework for unsupervised
pedestrian modeling. (4) Detailed optimization analysis and
learning stability analysis of the proposed PLM.

The remainder of this paper is organized as follows. Related
works are presented in Section II. In Section III and Section IV,
the PLM and model learning procedure are described, respec-
tively. In Section V, we give two implementations of the
self-learning approach. Extensive experiments are conducted
in Section VI and we conclude the paper in Section VII.

II. RELATED WORKS

Visual representations and classification models are two
major research topics in the area of supervised pedestrian
detection [22], [24]–[28]. In the long-term research history
of pedestrian detection, visual representations including Haar-
like features [29], [30], histogram of orientated gradient
(HOG) [31], multi-scale orientation features [9], and deep
learning features [24], [32] were explored. Classification mod-
els including SVMs [31], discriminatively trained part based

models (DPMs) [33], Random Forest [34], and deep neural
networks [32] were applied.

Our work is based on the most successful supervised
methods, i.e. DPM [33] and RCNN [3], with a new motivation
to learn pedestrian detectors using minimum supervision. It is
related to transfer learning, online learning, weakly supervised
learning, and unsupervised object discovery methods.

A. Transfer Learning

One conventional strategy of transfer learning was to lever-
age the object distributions in target domains to improve
the performance of pre-trained detectors in source domains.
Researchers utilized context cues [13], [15], confidence prop-
agation [15], [35], and virtual-real world adaptation [36] to
perform transfer learning. Gaussian process regression [37]
and super-pixel region clustering [8] were employed to select
“safe” samples in target domains. Large margin embed-
ding [38] and transductive multi-view embedding [39] were
explored to expand detector horizons. Generative or discrepant
classifiers [40] were used to fine-tune the network parameters
so that the feature distributions in the source and target
domains become similar.

Transfer learning can obviously reduce human annotations.
Nevertheless, it suffers from the domain variation problem,
i.e. the major differences of object appearance, viewpoint,
and illumination between source and target domains. When
the gap is significant, the adaptation of pre-trained features
and/or models becomes non-smooth. By contrast, the proposed
approach initializes and improves models in the same scenes,
naturally alleviating the domain variation problem.

B. Online/Semi-Supervised Learning

Online learning and semi-supervised learning improved
scene-specific detectors by taking advantage of the continuous
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incoming data stream from the target domains. Classical
detection-by-tracking (DBT) [41], [42] initialized the system
using offline trained detectors and leveraged temporal cues to
extend sample domains and cancel detection errors. Tracking-
Learning-Detection (TLD) [43] initialized the system with a
single sample, and used tracking and online learning to boost
detectors. Despite the popularity of DBT and TLD approaches,
recent studies [7] demonstrated that the simple combination of
detection with tracking might introduce poor detectors as the
errors from both detection and tracking were amplified in a
coupled system.

A P-N expert [43] was used in TLD to control precision
and recall rates, guaranteeing the learning stability as a linear
dynamic system. The learning stability of our approach can
also be guaranteed as the difference of convex (DC) objective
functions of PLM converge at each learning iteration.

C. Weakly Supervised Learning

Weakly supervised object detection (WSOD), where only
the image-level annotations indicating the presence or absence
of a class of objects in images are available, has attracted
increased attention [18], [44]. Compared with supervised
object detection methods that require annotated bounding-
boxes for all samples in all training images, WSOD requires
only image-level annotations, and thus can leverage tagged
images on Web and significantly reduce human effort about
data annotation. To tackle the problem of WSOD, latent vari-
able learning and multi-instance learning (MIL) are two kinds
of representative methods. Using redundant object proposals
as input, the learning objective of these methods is typically
designed to solve latent variables by minimizing the image-
level classification error.

Latent variable learning alternates between sample label-
ing and detector learning in a way similar to Expectation
Maximization optimization. Due to the missing annotations,
however, this optimization is non-convex and therefore prone
to getting stuck in a local minimum and outputting wrong
labelings [45]. Cinbis et al. [46] used a multi-fold splitting of
the training set while Bilen et al. [45] used convex clustering
to prevent getting stuck to wrong labels. In this paper, we
propose alleviating the local optima problem with a more
reasonable way by converting the problem into a difference
of convex (DC) optimization. We also introduce regularization
terms about domain knowledge, i.e. intra-frame hard-negative
mining and inter-frame similarity propagation.

D. Self-Paced Learning

Inspired by the cognitive principle of humans,
Bengio et al. [47] proposed self-paced learning (SPL),
where a model was learned by gradually including samples
from easy to complex. Recently, several works provided
more comprehensive understanding of the learning insight
underlying CL/SPL, and formulated the learning model
as a general optimization problem and SPL was proposed
for object detection. Lee and Grauman [48] introduced a
self-paced approach to focus on the easiest instances first,
and progressively expanded its repertoire to include more

complex objects. Sangineto et al. [49] presented a self-paced
learning protocol for object detection that iteratively selected
the most reliable images and boxes according to class-
specific confidence levels and inter-classifier competitions.
Wang et al. [50] used the self-supervision to mine valuable
information from unlabeled and partially labeled data.

Existing SPL approaches mainly focus on instance mining
in a easy-to-hard manner. Nevertheless, due to the long-tail
distribution of samples, hard instances are sparse and it is a
sophisticated task to find hard yet informative samples. In this
paper, the self-learning approach is deployed as components
of object discovery, object enforcement, and label propagation,
which are optimized in a progressive manner. It can use spatial
regularization and temporal consistence of video objects to
mine hard examples.

E. Unsupervised Video Object Discovery

An early approach [51] learned scene-specific object detec-
tors by online boosting, but it required offline learned seed
detectors. Recent research [18], [20], [52] formulated unsu-
pervised video object discovery as two complementary steps.
The first step established correspondences between prominent
regions across video frames, and the second step associated
successive similar object regions within the same video. Xiao
and Lee [20] proposed a fully unsupervised video object
proposal approach which first discovered a set of easy-to-group
instances by clustering and then updated the appearance model
to gradually detect harder instances by the initial detector
and temporal consistency. This unsupervised approach can
automatically generate object proposals, but cannot output
precise detections. Schulter et al. [53] formulated an iterative
process that exploits both motion (optical flow) and appearance
cues via a joint formulation of conditional random field to
extract and segment objects. Researchers also used domain
adaptation to construct a self-learning-camera [54]. However,
these methods did not incorporate a principle way to model
latent objects and often lacked strategies to guarantee the
learning stability.

III. PROGRESSIVE LATENT MODEL

The progressive latent model (PLM) targets at finding
accurate object locations given a set of object proposals that
have salient object-like appearance and motion, Fig. 2a. To this
end, PLM is decomposed into three basic components: object
discovery, object enhancement, and label propagation. The
object discovery component aims to find region proposals that
best discriminates positive video frames from the negative
images. The object enhancement component discovers hard
negatives that help reducing falsely localized object parts,
as well as improving object localization. The label propaga-
tion component mines harder instances throughout the video,
Fig. 2c and Fig. 2d. The three components iterate until an error
rate based stability criteria is met.

Let x ∈ X denote a video frame or a negative image.
y ∈ Y,Y = {0, 1} are labels denoting whether x contains
a pedestrian object or not. y = 1 indicates that there is
at least one pedestrian in the frame while y = 0 indicates
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Fig. 2. Object discovery from noisy proposals. (a) The score map in the first
learning iteration and (b) candidate objects (red boxes) discovered. (c) The
score map and in the fifth learning iteration. (d) Candidate objects (red boxes)
and hard negatives (yellow boxes). (Best viewed in color.)

a frame without pedestrian object or a negative image. PLM
is formulated with a multi-objective function that targets at
jointly determining the latent object h ∈ H and a latent model
β in a progressively optimization procedure, as

{
h∗, β∗} = arg min

β,h
F(X ,Y)(β, h)

= arg min
β,h

Fl(β, h) − λFs(β) + γFg(β, h), (1)

where Fl(β, h), Fs(β), and Fg(β, h),1 as defined below, are
the objective functions for object discovery, spatial regular-
ization, and score propagation, respectively. λ and γ are
regularization factors.

A. Object Discovery

The object discovery component is implemented with a
latent SVM (LSVM) model to choose object proposals that
best discriminate positive frames from negative images, as

{
y∗, h∗, β∗} = arg max

y∈Y,h∈H,β

βT · v (x, y, h) , (2)

where v(x, y, h) denotes a normalized feature vector.
H denotes the proposal set, which is made up of proposals
Hi , i = 1, . . . , N from video frames. Basically, solving Eq. 2
produces a high-scored βT · v(x, y, h) for each positive frame
(y = 1) and a low score for each negative image (y = 0).
Concretely, we learn the model β on a collection of video
frames and negative images X = {(xi , yi ), i = 1, . . . , N} with

min
β,h

Fl(β, h) = min
β,h

1

2
||β||2 + C

N∑
i=1

l(β, xi , yi , h), (3)

1In what follows, (X ,Y) is omitted for short.

where C is a regularization factor and l is a difference-convex
loss function defined as

l(β, xi , yi , h) = max
y,h

(
βT · v(xi , y, h) + �(yi , y)

)
− max

h
βT · v(xi , yi , h). (4)

�(yi , y) = 0 if y = yi , and 1 otherwise. Eqs. 3 and 4 target
at choosing the highest scoring proposals h from the other
configurations, defining a max-margin formulation to measure
the mismatch between the image, the image label, and the
object proposals.

B. Object Enforcement

The object discovery component aims at optimizing the
image-level classification instead of the object-level classi-
fication. Once the image-level classification objective func-
tion reaches optimization, whether or not the object-level
classification is optimized, the learning procedure stops [21].
Considering that all positive images contain the object parts
but none of negative images does, LSVM could falsely select
object parts as positive objects. The reason lies in that Eq. 4 is
non-convex as it is a difference of two convex functions. It is
known that optimizing a non-convex function is easy to get
stuck to a local minimum. Such local minimum means that the
algorithm might falsely select object parts as positive objects.

Motivated by the success of the application of hard negative
mining in visual object detection approaches [55], we propose
mining hard negatives those overlap with true positives and
using spatial regularization to enforce the localization of
objects. Denoting by Hi object proposals in frame i and h′ the
hard negatives corresponding to an object h in a video frame,
we define a function to maximize the distance between the
potential object and its spatial neighbors, as

max
β

Fs(β)=
N∑

i=1

∑
h∈Hi

h′∈�Hi ,h

||βT ·(v(xi , h)−v(xi , h′)
)||2, (5)

where �Hi ,h denotes the spatial neighbors of h in Hi . The
spatial neighbors are high-scored object parts and surrounding
image patches that have IoU (Intersection of Union) with h
in the interval (0.0 0.25). Eq. 5 optimizes the model β using
fixed h, and thus is a regularization function. Such a function
enforces the latent model, yielding a consistent and significant
boosts in object localization during progressive learning.

C. Label Propagation

According to Eq. 2, the object discovery component chooses
an object proposal that best discriminates the positive frame
from negative images. To mine more positives and negatives,
we propose using label propagation for incremental learning.

Suppose there are totally l labeled samples from previous
learning iterations. We select u = l × (r − 1.0) high-scored
proposals as unlabeled samples, where r > 1.0 is the learning
rate, related to the expected density of pedestrians. Given
labeled samples {hi }, i = 1, . . . , l, and unlabeled proposals
{h j }, j = l, . . . , l + u, a kNN graph in the feature space is
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first constructed. The graph vertex defines the nearest neighbor
vertices of samples. hi and h j are connected if one of them is
among the other’s kNN [56]. kNN graph automatically adapts
to the density of instances in a feature space: in a dense region,
the kNN neighborhood radius will be small; in a sparse region,
the radius will be large. The graph-based label propagation

procedure is defined as g(β, h j ) =
∑l

k=l w jk g(β,hk)∑l
k=l w jk

, j = l +
1, . . . , l + u, where wik denotes the edge weight defined with
a Gaussian Function on Euclidean distance between hi and hk ,
wik = exp

(
− (||hi−hk ||2)

2σ 2

)
, and σ is the bandwidth parameter

and controls the speed of weight decrease. This is equivalent
to a convex optimization problem [56], as

min
g(β,h)

Fg(β, h) = min
g(β,h)

l∑
i=1

l+u∑
j=l

wi j
(
g(β, hi ) − g(β, h j )

)2

s.t . g(β, hi ) = yi , i = 1, . . . , l, (6)

where g(β, h j ) is the propagated score of proposal h j and yi

is the label of the frame/image that hi belongs to.

IV. MODEL LEARNING

The procedure of model learning is to solve Eq. 1 with
a progressive optimization algorithm. The stability of this
algorithm is empirically guaranteed with the monotonically
non-increased error rate.

A. Progressive Optimization

In the learning procedure, the optimization of Fs(β) (object
enforcement) and Fg(β, h) (label propagation) depends on
the results of Fl (β, h) and Eq. 1 is a progressive model,
where Fl , Fs and Fg should be alternatively optimized. The
objective functions of Eq. 1 could be written as the difference
of convex functions. This allows us to optimize it with a
two-step Concave-Convex Procedure (CCCP) [21]. The CCCP
algorithm applied to latent model gives rise to a very intuitive
algorithm that alternates between learning the latent variable
h that best explains the training pair (xi , yi ) and solving the
optimization problem while treating the latent variables as
completely observed. This is similar to the iterative process
of Expectation Maximization (EM), which maximizes the
expected log likelihood under the marginal distribution of the
latent variables. We minimize the regularized loss against a
single latent variable hi that best explains (xi , yi ).

The first-step CCCP for Fl discovers potential pedestrian
objects in frames and initializes the latent model, the second-
step CCCP for γFg − λFs performs object enforcement
and label propagation. The two-steps of CCCP progressively
optimize the PLM until the change of the estimated sample
error rate is negligible. Theoretically, the CCCP algorithms
guarantee the optimization with difference of convex objective
functions converges to a local minimum or a saddle point [21].
Therefore, the iterative usage of the two-steps CCCP algorithm
with the constraint of error rate monotonicity (discussed
in Section B) can guarantee the stability of self-learning.

Fig. 3. The objective function (up) of the latent model is non-convex and
is easy to get stuck in a local minimum. The proposed progressive latent
model (PLM) uses a convex objective function (down) to assist the latent
model escaping from local minima and pursuing a stronger global minimum.

As analyzed above, the objective function of a conventional
latent model, Eq. 4, is typically non-convex, and thus is easy
to fall into a local optimum and falsely select object parts as
objects. The proposed PLM incorporates a spatial regulariza-
tion term and a convex label propagation term, and converts the
conventional non-convex optimization to an optimization prob-
lem with the difference of convex (DC) objective functions.
The essence of this approach is using convex regularization
to assist the latent model escaping from the local minimum
β(∗) and pursuing a stronger global minimum β(∗∗), Fig. 3.
Accordingly, PLM incorporates a spatial regularization term
to reduce ambiguities in object proposals and to enforce object
localization, and also a graph-based label propagation term to
discover harder instances in video frames. This introduces to
the objective function the object similarity constraint among
video frames, as well as preventing the object parts be falsely
localized.

B. Error Rate Analysis

PLM incorporates a label propagation procedure, Eq. 6,
which iteratively introduces new samples and updates the
model. In this procedure, the primary problems to be solved
are avoiding model drift and reducing the error rate. Eq. 1
and Eq. 6 imply that a larger γ value introduces more newly
labeled samples, as well as a larger error rate ξ , and vice
versa. The number of newly labeled samples u is determined
to be an implicit function of γ , u(γ ). The value of γ needs
to essentially guarantee that the error rate of newly labeled
samples is smaller than that of existing samples, meaning the
error rate of the training set is monotonically non-increased.
It is also expected that there is a large γ , which implies that
more samples could be labeled in each iteration. To decide the
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Fig. 4. Block diagram of self-learning. The proposal generation component
localizes potential objects using objectness, motion, and appearance cues. The
proposal ranking component chooses the high-ranked proposals as positive
candidates, and low-ranked ones as negatives. The PLM identifies positives
and hard negatives from candidates. PLM iteratively runs until the convergence
of the learning procedure.

value of γ , an optimization objective function is defined as

max
γ,β,y j

γ

s.t . ξu(γ ) ≤ ξl

�
1

l + u(γ )

l+u(λ)∑
j=1

( fβ(h j ) − ỹ j )

≤ 1

l

l∑
i=1

( fβ(hi ) − ỹi ), (7)

where l and u(γ ) respectively denote the numbers of labeled
samples in previous iterations and unlabeled samples in current
iteration.

The optimization of Eq. 7 guarantees that the estimated error
rate of newly labeled samples ξu(γ ) is empirically smaller
than that of labeled samples ξl by finding a proper γ in
each learning iteration. γ is optimized with a linear searching
algorithm [57], which searches in the interval [0.0, 1.0] with
step size 0.1 and updates the detector fβ(h j ) to fβ̃ (h j ) at each
step. Meanwhile, ỹ j is estimated with ỹ j = fβ̃ (·), with which
the error rate ξu(γ ) is calculated.

V. SELF-LEARNING IMPLEMENTATIONS

Based on the progressive latent model (PLM), two kinds of
self-learning implementations are provided in what follows.

A. Self-Learning With HOG Features

With the proposed PLM, a self-learning approach is imple-
mented as shown in Fig. 4. The proposal generation compo-
nent localizes potential objects using objectness, motion, and
appearance cues. The proposals are extended in successive
video frames with a Kanade-Lucas-Tomasi (KLT) tracking
algorithm. The proposal ranking component chooses the high-
ranked proposals as positive candidates and low-ranked pro-
posals as negatives. The PLM that incorporates components
of object discovery, object localization, and label-propagation
identifies positives and hard negatives from given proposals.
With mined positive samples, a DPM detector fβ(h) is trained
to perform pedestrian detection.

Given a video of static background, a motion score map is
calculated for each video frame with a background modeling
algorithm. On the motion score map, detection proposals
(as shown in Fig. 2b) are extracted using the EdgeBoxes
approach [58]. From the second iteration, a pedestrian detector
is initialized and a sliding window strategy is used to generated
object proposals, as shown in Fig. 2d. To extend the proposals
in the temporal domain, a KLT tracking algorithm is employed
to track and collect proposals from frame t to frame t + τ ,
where τ is empirically set to 10. Before feeding these spatial-
temporal proposals to the learning algorithm, their aspect ratios
are normalized to the average aspect ratio. To prevent falsely
choosing static backgrounds in videos of sparse pedestrians,
the average background probability of a proposal is required
to be larger than a threshold, empirically set to 0.20 in our
experiments.

To choose high-ranked proposals and reduce redundancy of
object proposals, we propose using a combinatorial score, as

f (h) = αT · ( fβ(h), fm (h), fo(h)), (8)

where αT is a ranking weight vector. fβ(x), fm(h) and fo(h),
respectively, are the detection, motion, and objectness scores.
The motion score fm(h) of a proposal is defined as the
averaged motion scores of all pixels in its image region.
Objectness score fo(h) is defined by calculating contours
in the proposal regions [58]. A larger score gives higher
confidence that the proposal is an object. Detection score
fβ(h) is calculated from the second learning iteration, by the
learned detector. From the second iteration, the proposal region
centers are set as root locations, around which we use a sliding
window strategy [2] to localize proposals.

In each learning iteration, the ranking weight vector αT

is updated using a zero-space regression method [59], which
performs learning without using output values. It basically
minimizes the regression error of all samples, as well as
maximizing the distance from a hyperplane to the origin. This
results in a weight vector which captures regions in the input
sample space where the probability density of the data is
found, and enables the proposal ranking to be adaptive.

B. Self-Learning With Deep Features

PLM is also implemented with a deep convolutional neural
network (CNN), where the network parameter β and object
locations h are jointly optimized with the stochastic gradient
decent (SGD) algorithm. PLM has two network branches
added atop of the FC layers, Fig. 5. The first network
branch, designated as the object discovery branch, defines
the distribution of object scores and targets at finding high-
scored object proposals by optimizing the image classification
loss defined by Eq. 4. The second branch, designated as the
object localization branch, uses pseudo-objects localized to
learn a localization classifier. It targets at finding true objects
by optimizing the spatial enforcement terms defined by Eq. 5.
The label propagation is independently performed as Eq. 6.

The learning procedure targets at transferring the image-
level supervision, i.e. the absence or presence of pedestrians
in an image/frame, to object locations. In a feed-forward
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Fig. 5. Block diagram of self-learning with a deep learning framework. Given object proposals and frame-level labels, it targets at learning network parameters
and pedestrian locations by minimizing the object discovery and object localization loss. The model is progressively learned by iteratively optimizing the two
network branches which using forward propagation to select sparse proposals as object instances, and back-propagation to optimize the network parameters
with SGD.

procedure, minimization of image-level classification loss,
defined as l(β, xi , yi , h), discovers high-scored proposals.
The object enhancement is then performed by minimizing
− ∑

h∈Hi
h′∈�Hi ,h

βT ||·(v(xi , h)−v(xi , h′)
)||2. The label propagation

is finally performed based on the scored proposals by the
above two steps to mine pseudo objects for detector learning.
In the back-propagation procedure, the object discovery and
object enhancement branches are jointly optimized with an
SGD algorithm, which propagates gradients generated with
image classification loss and pseudo-object detection loss.
With forward- and back-propagation procedures, the network
parameters β are updated and object detectors are enforced.

In the learning phase, object proposals are firstly generated
for each image. An ROI-pooling layer atop the convolutional
layer (CONV5) is used for efficient feature extraction for
these proposals. The PLM model is progressively learned by
optimizing the object discovery branch and object enforcement
branch which use forward propagation to select sparse pro-
posals as object instances, and back-propagation to optimize
the network parameters. We use the VGG16 [60] trained on
ImageNet as a backbone network. For network fine-tuning,
the fully connected layers used for soft-max classification from
zero-mean Gaussian distributions with standard deviations
0.01. A momentum of 0.9 and parameter decay of 0.0005
(on weights and biases) are used. Biases are initialized to 0.
A global learning rate of 0.001 is used. We use 20 epoches for
learning and each epoch has 5k iteration. After 12 epoches,
the learning rate is reduced to 0.0001. In the detection phase,
the learned detector, i.e. the parameters of the soft-max
and FC layers, are used to classify proposals and localize
objects.

VI. EXPERIMENTS

The proposed approach is evaluated on five video datasets
including PETS2009 [61], Towncentre [62], PNN-Parking-
Lot2/Pizza [8], CUHK Square [15], and 24Hours [23]. In what
follows, the datasets and experimental settings are first
described. The evaluation of the model and comparison with
relevant approaches are then presented. Finally, we analyze
the limitation of the proposed approach.

A. Experimental Settings

For all datasets except the 24Hours, half video frames are
used for learning while the other annotated frames are used for
testing. These video sequences are captured with surveillance
cameras and involve challenges from object occlusions, low
resolution, and/or moving distracters. The pedestrians are
dominant moving objects, i.e., more than 75% moving objects
in a scene are pedestrians. For video scenes of few pedestrians
but many moving distracters, we observed that the learned
detectors fail to detect pedestrians. The detailed description of
these datasets can be found in [23].

The proposed approach is compared with the supervised
learning, transfer learning, and weakly supervised learning
approaches including:

1) Offline-DPM [2]: A DPM pedestrian detector off-line
trained on the PASCAL VOC 2007 dataset.

2) Supervised-DPM: A supervised DPM detector trained
with human annotated samples on specific scenes and addi-
tional negative samples mined from negative images.

3) Supervised-FasterRCNN [4]: A state-of-the-art detector
with region proposal and deep feature networks.

4) Supervised-SLSV [6]: A state-of-the-art scene-specific
pedestrian detector learned from virtual pedestrians whose
appearance is simulated in the specific scene under consid-
eration. Without public available source code, SLSV is only
compared on the Towncentre dataset using the reported results.

5) Transfer-DPM [8]: A scene-specific detection approach
based on transfer learning. Detections are originally obtained
with a DPM pedestrian detector off-line trained using
PASCAL VOC 2007 dataset and then improved using super-
pixel based clustering and classification.

6) Transfer-SSPD [15]: A state-of-the-art scene-specific
pedestrian detector with transfer learning.

7) Weakly-MIL [46]: A widely used weakly supervised
approach based on multiple instance learning. A DPM detector
is then learned from annotated positive samples.

B. Model Effect

1) Object Enforcement: We first evaluate the module of
object enforcement. By using the object enforcement (OE)
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TABLE I

AP (AVERAGE PRECISION) OF PLMS ON THE PETS2009 DATASET.

“BASELINE” DENOTES THE DPM DETECTOR TRAINED WITH

TOP-RANKED PROPOSALS IN VIDEO FRAMES. “OE” DENOTES

THE OBJECT ENFORCEMENT COMPONENT. “ITER1-10”

DENOTE THE FIRST TO THE 10-th ITERATIONS.

“FINAL” DENOTES THE LEARNED DPM

DETECTOR BY PLM

TABLE II

AP OF FASTRCNN DETECTOR LEARNED BY DEEP PLMS ON THE

PETS2009 DATASET. “EPOCH1-10” DENOTE THE

FIRST TO THE 10-th EPOCHES

component, Eq. 5, the performance of the learned detector
significantly improves, as shown in Table I. The reason is
that pedestrians are more precisely localized and most falsely
detected object parts are suppressed. For the final detection
models, the average precision (AP) improves about 7%, val-
idating that the object enforcement modules helps learning
better detectors.

2) Label Propagation: Given ranked object proposals,
the label propagation component can incrementally annotate
pedestrian samples without supervision. Table I clearly shows
that the detection model is iteratively improved, validating the
effectiveness of the label prorogation component. The Average
Precision (AP) improves 6.7% from the first to the second
iteration, and improves 2.9% from the fifth to the tenth
iteration. After ten iterations, there are few positive instances
can be labeled and the performance remains stable. Table II
shows the progressive performance improvement of the
end-to-end deep PLM.

3) Progressive Latent Model: To show the overall effect
of the PLM model, we train baseline DPM [33] and
FastRCNN [55] detectors by selecting top-ranked propos-
als from video frames. The baseline detectors do not use
object enforcement or progressive optimization. As shown in
Table I and Table II, PLMs outperform the baseline detectors
with large margins, which verifies the effectiveness of the
proposed model and the self-learning approach.

4) Error Rate Analysis: The evolution of sample error
rates and proposal ranking weights are used to validate the
convergence of the learning procedure. Fig. 6a and Fig. 6c
show that the error rates of labeled training samples monoton-
ically decrease, showing the stability of the proposed self-
learning approach. From the 10-th to the 15-th learning
iteration (epoch), the sample error rates became small enough,
although there is little fluctuation on the Towncentre dataset.
Fig. 6b shows the evolution of proposal ranking weights on
the PETS2009 dataset. The weight for the objectness score
quickly decays to zero, which implies that the objectness score
is not as discriminative as the detection and the motion scores.

Fig. 6. Learning stability. (a) Monotonic decrease of sample error rates
of PLM. (b) Evolution of proposal ranking weights of PLM. (c) Monotonic
decrease of sample error rates of deepPLM. (d) Evolution of proposal ranking
weights of deepPLM. (The motion cue is not used in deep PLM.)

Fig. 7. Examples of learned positive instances at different iterations. (a) Pets
2009 dataset. (b) PNN-Pizza dataset.

The weight for the detection score keeps increasing during
learning, which indicates that the detector is progressively
improved. The weight of motion score decreases to be close
to the detector score. In Fig. 6d, the proposal ranking weights
of the deep PLM are shown. It can be seen that the weight of
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Fig. 8. Performance of the PLM (DPM detector) and comparisons with weakly supervised, supervised, and transfer learning approaches. On five datasets the
Precision-Recall metric is adopted for evaluaiton. On the CUHK dataset the FPPI-Recall metric used, which is consistent with the state-of-the-art scene-specific
detection approach [15].

object score approaches 1.0 and that of objectness decreases
to zero.

Fig. 7 shows examples of learned positive instances at dif-
ferent iterations, which also shows that the proposed PLM can
remove false instances while mine true positives, progressively.

Experiments show that with linear search defined in
Section IV, Part B we can determine a proper propagation
parameter γ for a dataset. γ = 0.7 of the Towncentre dataset is
the largest, while γ = 0.3 of the CUHK dataset is the smallest.
A larger γ implies that the object proposals have fewer noises.
The Towncentre dataset is a video with little illumination
variance and few moving distracters, and therefore a larger γ
is proper to it. The CUHK and 24Hours datasets have many
moving distracters, so they need a smaller γ [23].

C. Performance and Comparison

The PR and FR curves in Fig. 8a-f show that the PLM
significantly outperforms the off-line learned DPM detector.
It also significantly outperforms the Weakly supervised (MIL)
approach by 14% when FPPI = 1.0. On the PETS2009 and
PNN-Parking-Lot2 datasets, PLM outperforms all of the
compared approaches except for the fully supervised DPM
method. On the CUHK dataset PLM significantly outperforms
the scene-specific approach [15] that uses transfer learning
to aggregate the detection performance on difference video
scenes. It is even comparable to the supervised DPM method.

On the Towncentre dataset, the proposed PLM outperforms
the MIL approach as well, i.e. AP 0.797 vs. 0.695. However,
its performance is lower than that of the fully supervised

approach SLSV [6] (AP 0.852) and the transfer learning
approach (AP 0.934) [8]. The likely reason is that our approach
cannot mine sufficient positive instances when the pedestrians
are sparse.

On the 24Hours dataset, the AP of our approach reports
the highest performance, Fig. 8e. Its performance is about 6%
higher than that of the transfer learning method. The reason
lies in that transfer learning suffers from the domain variation
problem, e.g. adapting a model trained on images with day-
time illumination to a video sequence of 24-hour illumination
changes. By contrast, the proposed self-learning approach,
which applies the detectors learned from the same scenes,
can alleviate the domain variation problem. Surprisingly, our
approach outperforms the fully supervised approaches in this
dataset. The reason lies in that additional motion cues, which
are discriminative for video sequences of static backgrounds,
are incorporated in the detector.

The PR and FR curves in Fig. 9 show that the self-learning
approach with deep PLM is effective. On the TownCentre,
PETS2009, and PL-Pizza datasets, the deep PLM respectively
achieves 48.7%, 32.7%, and 47.2% mAPs, which are com-
parable to 36.1%, 35.1%, and 61.2% mAPs of the transferred
deep learning models. We also note that the transferred models
are trained with precisely annotated instances in other scenes,
but deep PLMs require to learn from chaos. When the overlap
threshold reduces to 0.3, it can be seen that the performance
of our self-learning approach respectively increases to 65.2%,
58.5%, and 69.8% on the three datasets. This shows that
the errors of self-learning with deep features mainly arise
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Fig. 9. Performance of the learned FastRCNN detector with deep PLM and comparison with the transferred deep models.

Fig. 10. Illustration of learning procedures. From left to right: score maps
in the first, fifth, and tenth learning iterations, respectively. For more learning
results, please refer to [23].

from imprecise object localization, i.e. the overlap between a
detected object with the groundtruth is smaller than 0.5. The
deep self-learning approach can well learn pedestrian patterns,
which can well discriminate the pedestrians with the clutter
backgrounds but experiences difficulty to precisely localize
them. In addition, in the deep PLM we do not use motion
cues.

Fig. 11. Pedestrian detection examples using our proposed PLM and deep
PLM. Blue boxes indicate correct detections, red boxes missed detections,
and green box false detections. The results shows that PLM can effectively
discover human objects and most false detections are caused by inaccurate
localization, i.e. the detectors can localize partial objects or objects with
backgrounds. (Best viewed in color.)

In Fig. 10, we illustrate the evolution of proposal scores
during the progressive optimization. It can be seen that the pos-
itive samples are incrementally labeled and noise samples are
reduced. On the crowded PES2009 dataset and the PNN-Pizza
dataset which incorporates significant occlusions our approach
can accurately localize positive samples, demonstrating effec-
tiveness of the object discovery and label propagation com-
ponents. On the Towncentre and CUHK datasets, although
there exist moving distractors, e.g. bicycles and vehicles, our
approach correctly localizes the pedestrians, demonstrating its
robustness in noisy environments. In the 24Hours dataset,
some video frames have dense pedestrians (daytime) but others
have sparse pedestrians (at night). Learning from the early
morning to the middle of the night, our approach progressively
aggregates the performance without model drift. In Fig. 11,
the detection results show that the learned scene-specific
detectors are discriminative, showing robustness to camera
views, occlusions, and background structures.
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D. Limitations

In experiments, it is observed that most false detections
and missed detections (red boxes in Fig. 11) are caused by
false localization. Some detected object boxes are significantly
larger or smaller than the objects. This indicates that the
deep PLM can discover pedestrians well but fails to localize
them precisely. In the learning procedure of deep PLM, object
locations could evolve with great randomness, e.g. switching
among object parts [63]. Various object parts are capable of
optimizing the learning objective by minimizing image clas-
sification loss, but experienced difficulty in optimizing object
localization. One reason lies in the inconsistency between the
frame-level supervision and object-level models. It requires
solving non-convex optimization in vast solution spaces, e.g.
thousands of images and thousands of object proposals for
each frame, which might introduce sub-optimal solutions,
as analyzed in Sec. IV, Part A. On the other hand, the deep
features are shift invariant and thus tend to learn imprecise
localization models given ambiguous object locations.

VII. CONCLUSION

Supervised learning of detectors for all scenes requires
significant human effort on sample annotation. Commonly
used transfer learning and semi-supervised learning do not
fully reduce human supervision as they require partial object-
level annotations. In this work, we show that by leverag-
ing extremely weakly annotated video data it is possible to
learn customized pedestrian models for specific video scenes.
A progressive latent model (PLM) is proposed by incorporat-
ing discriminative and incremental functions. A self-learning
approach is implemented by optimizing the model over
spatio-temporal object proposals. Experiments demonstrated
that the self-learned detectors outperform weakly supervised
approaches and transfer learning approaches with significant
margins and are comparable to fully supervised ones. The
reality behind the superior performance is that the scene-
specific object occlusions, camera views, and background
structures are well incorporated into the self-learned detectors.

The self-learning approach is also implemented in a deep
learning framework by updating the PLM to deep PLM
and fine-tuning network parameters with learned objects.
Experiments validate that deep PLM is effective to discover
pedestrian objects but experiences difficulty to precisely local-
ize them. This indicates future research opportunities for
self-learning video detectors using deep learning features.
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