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Harmonic Feature Activation for Few-Shot
Semantic Segmentation

Binghao Liu, Jianbin Jiao, Member, IEEE, and Qixiang Ye , Senior Member, IEEE

Abstract— Few-shot semantic segmentation remains an open
problem because limited support (training) images are insuffi-
cient to represent the diverse semantics within target categories.
Conventional methods typically model a target category solely
using information from the support image(s), resulting in incom-
plete semantic activation. In this paper, we propose a novel
few-shot segmentation approach, termed harmonic feature acti-
vation (HFA), with the aim to implement dense support-to-query
semantic transform by incorporating the features of both query
and support images. HFA is formulated as a bilinear model,
which takes charge of the pixel-wise dense correlation (bilinear
feature activation) between query and support images in a
systematic way. HFA incorporates a low-rank decomposition pro-
cedure, which speeds up bilinear feature activation with negligible
performance cost. In addition, a semantic diffusion procedure is
fused with HFA, which further improves the global harmony and
local consistency of the feature activation. Extensive experiments
on commonly used datasets (PASCAL VOC and MS COCO) show
that HFA improves the state-of-the-arts with significant margins.
Code is available at https://github.com/Bibikiller/HFA.

Index Terms— Few-shot learning, semantic segmentation, har-
monic activation, semantic diffusion, bilinear model.

I. INTRODUCTION

THANKS to the large-scale datasets with dense annota-
tion, Convolutional Neural Networks (CNNs) have made

unprecedented progress in computer vision tasks [1]–[5]. Nev-
ertheless, large-scale dense annotation usually requires great
human effort and time cost, while models trained on such
datasets often fail to handle novel object categories. As a
promising direction, few-shot learning, e.g., few-shot semantic
segmentation, has been proposed to solve those problems.
It targets at learning high-performance models upon training
samples while generalizing the model to novel categories with
only a few support images.

In the deep learning era, few-shot learning is often exploited
in the metric learning framework with a two-stream structure
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consisting of a support branch and a query branch [6]–[12].
The support branch aims to extract specific semantic represen-
tation from support image(s), and uses such representation to
guide the query branch for semantic segmentation. However,
many existing works solely leverage the semantic represen-
tation from support image(s), i.e., extracting the foreground
features of support image(s) and concatenating the extracted
features for linear activation. Such linear activation based on
feature concatenation leads to insufficient information inter-
action between support and query images, Fig. 1(a). Given
limited support images, it is hard to learn complete semantics
for objects of various scales, perspectives, and poses. This
consequently causes the incomplete semantic activation and
false/missing segmentation.

In this paper, we propose the harmonic feature activa-
tion (HFA) approach to transform semantics from support
to query images while considering the intra-image semantic
consistency. Semantic activation is formulated as a bilinear
model, which takes charge of the pixel-wise dense correlation
(bilinear feature activation) between query and support images.
This is implemented as a tensor operation between support
and query features. HFA thus leverages complete features of
support image(s), instead of pooled features, for dense seman-
tic interaction, Fig. 1. When the dimensionality of support
and query features is high, however, the scale of the tensor
operation is large and the efficiency is low. We thus further
propose a low-rank decomposition procedure, which speeds up
bilinear feature activation by decomposing the tensor to three
matrices and a small core tensor. To guarantee the semantic
consistency within the query image, HFA further incorporates
a semantic diffusion module. For the variation of object scales,
perspectives and poses, semantic activation of the query image
would be incomplete, i.e., when some object parts are well
activated, others could be missed, Fig. 1(a). The semantic
diffusion module, as a complementary to support-to-query
activation, is used to refine object extent by defining an
iterative pixel-level semantic propagation. With semantic dif-
fusion, the under-activated features in object parts are refined
and the semantic consistency of target objects is enhanced,
Fig. 1(b).

The contributions of this work are summarized as
follows:

• We propose the Harmonic Feature Activation (HFA)
approach, defining a systematic way for support-to-query
semantic transform based on bilinear feature activation
and semantic diffusion modules.
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Fig. 1. Comparison of harmonic feature activation (HFA) with linear feature
activation. Due to the scale, perspective, and pose variation of objects, there
is a semantic gap between objects in support image(s) and query images.
Linear feature activation represents a target category solely using information
from the support image(s) while unfortunately ignoring the semantics within
the query image, which causes incomplete activation (green box) and false
activation (red box). The proposed HFA leverages bilinear feature activation
and semantic diffusion to fuse the information from both query and support
images for harmonic semantic activation.

• We propose a low-rank decomposition strategy to approx-
imate the bilinear feature activation, providing an efficient
way for dense semantic transform.

• We achieve new state-of-the-art performance on the
PASCAL VOC and MS COCO semantic segmentation
datasets. Particularly, on the large-scale MS COCO
dataset, we improve the 1-shot segmentation performance
by 3.81%, which is a significant margin.

II. RELATED WORK

A. Semantic Segmentation

Various supervised and weakly supervised segmenta-
tion methods are based on the fully convolution network.
DeepLab [13] adopts atrous spatial pyramid pooling (ASPP) to
explicitly control the resolution at which feature responses are
computed within Deep Convolutional Neural Networks. The
weakly supervised segmentation approach [14] uses the recur-
sive semantic segmentation framework based on image-level
category labels. Ontology-based semantic image segmentation
(OBSIS) [15] jointly models image segmentation and object
detection. Relevant researches about semantic segmentation
have provided fundamental techniques, e.g., multi-scale fea-
ture aggregation [2] and ASPP [13] for few-shot semantic
segmentation.

B. Few-Shot Learning

State-of-the-art methods for few-shot learning can be
roughly categorized as either: metric learning [16]–[20],
meta-learning [21]–[24], or data augmentation [25], [26].
Metric learning methods measure the distances between
images/regions. Meta-learning based approaches improve opti-
mization strategies or loss functions, which speed up learning
and updating of parameters with few examples from novel
categories. Data augmentation methods typically generate new
samples for unseen categories [25], [26].

Prototypical models [8], [9], [27] that convert the spatial
semantic information of objects to the convolutional chan-
nels have achieved the state-of-the-art results on few-shot
learning. While these methods leverage the semantic infor-
mation in support image(s), few of them consider incorpo-
rating the information from query images. Prototype-relation
Network [28] leverages prototypes and semantic relations for
few-shot recognition, presenting a new loss function which
takes both inter-class and intra-class distances into account.
The reinforcement learning method [29] leverages sampling
to de-correlate the semantics within an image, and extracts
varying sequences of patches on every forward-pass with
discriminative information observed. This can be viewed as a
form of “learned” data augmentation in the sense searching for
different sequences of patches within an image and performs
classification with the aggregation of the extracted features,
resulting in improved performance. The semantic selection
method [30] pursues a universal representation by training a
set of semantically different feature extractors. It then uses
the universal representation to automatically select the most
relevant representation for semantic activation.

C. Few-Shot Segmentation

Early few-shot segmentation methods usually adopt a para-
metric module, which fuses information extracted from the
support image(s) to segment the query image with a few
convolutional operations. In [31] support features are con-
catenated with query ones to activate features within object
regions. The activated features are fed to the following convo-
lutional layers to generate segmentation masks. In [7], masked
average pooling is utilized to extract foreground/background
information within support image(s). CANet [8] consists of a
two-branch model which performs feature matching between
the support image(s) and the query image. It also proposes
an iterative refinement module which iteratively refines the
segmentation results. FWB [10] focuses on improving the
representative capability of support features by leveraging
foreground-background feature differences. Based on features
learned on support-query image pairs, the target object in the
query image is segmented by using a metric-based comparison
between the class feature vector and the query feature maps.

PANet [9] offers high-quality prototypes that are represen-
tative for each semantic class and meanwhile discriminative
for different classes. During training, it introduces a special
strategy to perform data argumentation by exchanging the
roles of support and query images. Considering the semantic
gap between support and query images, however, the model
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Fig. 2. Flowchart of the proposed harmonic feature activation (HFA), which consists of a bilinear feature activation module and a semantic diffusion module.

is challenged by object categories of similar semantics.
PGNet [11] uses attentive graph reasoning to propagate label
information from support image(s) to the query image. The
graph attention mechanism establishes the element-to-element
correspondence across structured data by learning attention
weights between nodes. Nevertheless, when transferring
semantics from support to query image, the semantic
consistency within the query image is ignored. The
cross-reference network [12] concurrently makes predictions
for both the support image(s) and the query image. With a
cross-reference mechanism, it finds the co-occurrent objects,
thereby improving the semantic transfer between support and
query images. However, the cross-reference network remains
using a single prototype to perform segmentation, which
increases semantic ambiguity and misses object parts.

D. Bilinear Model

In this study, we aim to transfer dense semantics from
support to query images by a bilinear model, which strength-
ens the response of target category features in the way of
bilinear pooling. Existing works [32] have effectively reduced
the descriptor dimension of bilinear pooling by perform-
ing a Random Projection, making it possible to compute
the high-dimensional descriptor without using explicit tensor
operation. Lin et al [33] elaborate the Bilinear pooling with
CNNs. They find that the matrix square-root normalization
outperforms alternative schemes such as the matrix logarithm
normalization when combining element-wise square-root with
L2 normalization. We use the bilinear model to activate
and fuse features in the few-shot setting. The purpose is
to strengthen the response of target category features in a
preciser way. We also introduce a low-rank decomposition
procedure, which speeds up the bilinear model with plausible
approximation.

III. METHODOLOGY

We first formulate semantic activation as a bilinear model,
which fuses the query and support features together and acti-
vates the features related to target object categories. We then
introduce low-rank tensor decomposition to approximate the
bilinear model and improve computational efficiency. Finally,
we propose the semantic diffusion module, which propagates

confidence among query features leveraging the semantic con-
sistency to improve feature activation. The semantic segmen-
tation mask is obtained after a few convolutional operations
on the activated feature maps.

A. Bilinear Model

The aim of few-shot semantic segmentation is to classify
each pixel within object extent to a pre-defined category
as well as classifying other pixels to the background. The
segmentation model requires to fully leverage the limited
semantics in few-shot support image(s) and the query image
to activate full object extent in the query image. To fulfill this
purpose, the few-shot segmentation problem is formulated as a
bilinear model [34], which leverages the pair-wise correlation
between support and query features to activate query features.
A general bilinear model is defined as

f (X, Y ) = T ×1 X ×2 Y, (1)

where X and Y respectively denote the matrices to be fused.
T denotes a core tensor which fuses the input matrices using
a bilinear model. f (X, Y ) denotes the output of the bilinear
model. ×i represents the i -mode product [35] between a tensor
and a matrix.

For few-shot segmentation, Fig. 2, we first extract features
from the support and query images using a CNN. We then
resize the support mask and multiply it with support features
in a pixel-wised manner to highlight features corresponding to
objects of interests and depress those corresponding to back-
ground regions. The query features and the highlighted support
features are denoted as Q f ∈ R

Dq×H×W and S f ∈ R
Ds×H×W .

Dq and Ds denote the numbers of feature channels. H and
W denote the height and width of the maps. Q f and Qs are
respectively reshaped to Q ∈ R

H W×Dq and S ∈ R
H W×Ds .

The bilinear model is then applied to correlate the semantics
of support and query features to activate the query features, as

A = T ×1 S ×2 Q, (2)

where A ∈ R
H W×H W×Do denotes the activated features. Do

denotes the feature channel number of A. T ∈ R
Ds×Dq×Do

denotes a core tensor which fuses S and Q in a pair-wise
fashion.
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Fig. 3. Tucker decomposition of the core tensor.

B. Low-Rank Decomposition

When the dimensionality of support and query features is
high, the size of core tensor T is very large, which means
high computational and memory cost. For example, for
Ds = Dq = 256, Do = 256, T has 16777216 parameters.
We thereby introduce the low-rank decomposition to
approximate the operation defined in Eq. 2 while significantly
reducing the computational cost.

As shown in Fig. 3, we use the tucker decomposition [35]
to decompose a large tensor to three matrices and a small core
tensor. For a 3rd-order tensor T , the tucker decomposition is
defined as

T = T ×1 Ms ×2 Mq ×3 Mo, (3)

which converts T ∈ R
Ds×Dq×Do to three unitary 2D matrices,

Ms ∈ R
Ds× fs , Mq ∈ R

Dq× fq and Mo ∈ R
Do× fo , and a smaller

core tensor, T ∈ R
fs× fq× fo . fs , fq and fo are the dimensions

of T , which are usually smaller than Ds , Dq and Do.
Accordingly, Eq. 2 is re-written as

A = T ×1 (S × Ms ) ×2 (Q × Mq ) ×3 Mo, (4)

where Ms and Mq are 2-D matrices which project the support
and query features (S and Q) into an embedding space and
the features are denoted as Ŝ ∈ R

H W× fs and Q̂ ∈ R
H W× fq ,

respectively. The core tensor T fuses Ŝ and Q̂ together to
generate activation confidence maps. Mo is a matrix which
transfers the activation confidence maps to activated features
(A ∈ R

H W×H W×Do), which are summarized and reshaped
to obtain the intermediate activation maps, denoted as Â ∈
R

Do×H×W , Fig. 4.
The low-rank decomposition procedure aims to reduce the

computational cost by reducing rank of the core tensor, T .
We decompose T into multiple slices (matrices) along dimen-
sion R

fo . Specifically, by setting rank of the slices (matrices)
to L ≤ min{ fs , fq }, we have the low-rank tensor TL . Accord-
ing to linear algebra, a L-rank matrix can be decomposed into
L 1-rank matrices, and a 1-rank matrix can be represented
by the outer product of a column vector and a row vector.
As shown in Fig. 4, the kth slice of TL is decomposed by

TL [:, :, k] =
L∑

m=0

uk
m × (vk

m)�, (5)

where uk
m ∈ R

fs×1 and (vk
m)� ∈ R

1× fq respectively denote a
column vector and a row vector (a column-row vector pair).

Replacing A in Eq. 4 with AL , we have

AL = TL ×1 Ŝ ×2 Q̂ ×3 Mo. (6)

which denotes activated features generated with the L-rank
decomposition. L is experimentally determined to balance
accuracy and computational cost. By defining

CL = TL ×1 Ŝ ×2 Q̂, (7)

we have

AL = CL ×3 Mo. (8)

Substituting Eq. 5 into Eq. 7, we have

CL [:, :, k] =
L∑

m=0

(
Ŝ × uk

m

) × (
(vk

m)� × Q̂�)
, (9)

where CL ∈ R
H W×H W× fo denotes confidence maps produced

by the bilinear activation procedure. CL[:, :, k] is the k-th slice
of confidence map along dimension R

fo . Eq. 9 thereby defines
dense correlation between Ŝ and Q̂. Such correlation first
compresses Ŝ and Q̂ to vectors by uk

m and (vk
m)� then fuses

the compressed vectors to generate a confidence map by a
product operation.

The procedure of bilinear activation with low-rank decom-
position is detailed in Fig. 4. In the procedure, we first
decompose the fo slices to fo∗L column-row vector pairs, and
the column and row vectors are represented as two matrices
∈ R

fo×L . Each column-row vector pair (uk
m, (vk

m )�) multiplies
with (Ŝ, Q̂), squeezing (Ŝ, Q̂) into semantic vectors. Given
fo ∗ L row-column pairs, we generate fo ∗ L semantic vectors
in total for the query and support images, respectively. We then
multiply the support and query semantic vectors to generate
a map matrix ∈ R

fo×L . The elements of the map matrix are
maps ∈ R

H W×H W . Following Eq. 9, we conduct summation
and concatenation operations along the second and the first
dimension of the map matrix. Then we obtain confidence maps
(CL ∈ R

H W×H W× fo). We follow Eq. 8 to multiply CL with
Mo, and get activated features (AL ∈ R

H W×H W×Do), which is
further summarized along the first dimension and reshaped to
get the intermediate activation maps ( ÂL ∈ R

Do×H×W ). The
core tensor T is learnable and randomly initialized. During
training, it is updated at each iteration via back-propagation.
During testing, it is fixed and used to fuse support and query
features. In low-rank decomposition, T is decomposed into
uk

m and vk
m . Ms , Mq , Mo, uk

m, vk
m are also learnable matrices

which are updated during training and fixed during testing.

C. Semantic Diffusion

Bilinear activation tends to activate object regions (e.g.,
the head and tail of a cow) of large semantic similarity
with the support image(s). Nevertheless, the object regions of
small semantic similarity with the support image(s) could be
unfortunately ignored. To pursue harmonic activation maps,
a semantic diffusion procedure, which considers the local
semantic consistency and intra-relevance of the query image,
is proposed to refine the intermediate activation maps.

During semantic diffusion, pixels within the intermediate
activation maps are updated according to its r2 neighbors and
diffusion weights. The process to construct diffusion weights
P are illustrated in Fig. 5, where we use conv-blocks to encode
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Fig. 4. Bilinear feature activation equipped with low-rank decomposition. We use Ms and Mq to project support and query features into a latent space,
where the dimensionality of feature maps is significantly reduced. We then use the core tensor T to fuse the feature maps and generate activation maps.
In the activation process, each slice of T is decomposed to L row-column vector pairs. The vector pairs are multiplied with the feature maps and calculate
the activation confidences. (Best viewed in zoom).

Fig. 5. The iterative diffusion process of semantic diffusion module. Diffu-
sion weights are generated from query features by a convolution operation.
The value of each pixel is updated with the values of its neighbors, and the
intermediate activation maps are then iteratively updated based on diffusion
weights.

the query features and transfer its dimensionality to R
r2×H×W .

For each spacial location of the encoded maps, we extract
a vector with the dimensionality R

r2×1×1, representing the
diffusion weights of r2 neighbors. Based on the weights, pixels
within the same objects tend to have stronger connections, thus
they are more likely to diffuse the activation confidence to each
other. We then use conv-blocks to reduce the dimensionality
of intermediate activation maps ( ÂL ∈ R

C×H×W ), reducing
the parameters and implementing efficient diffusion. Semantic
diffusion iterates K steps, as

Ât
L = D( Ât−1

L , P), (10)

P = Conv(Q, θ) ∈ R
r2×H×W (11)

where Conv denotes a stack of Conv-ReLU blocks and Ât
L

denotes the activation maps generated by the t th diffusion step,
0 < t ≤ K . D is the diffusion function. P ∈ R

r2×H×W

denotes the diffusing weights, which are generated from query

Algorithm 1 Semantic Diffusion

features Q f , Eq. 11. θ denotes the learnable parameters of
Conv-ReLU blocks.

Denote the i th channel of the intermediate activation maps
as Ât

L ,i . During each diffusion iteration, pixels of Ât
L ,i are

updated by the linear weighting of their r2 neighbors with
diffusing weights:

Ât
L ,i;m,n =

∑

u,v∈Ni;m,n

Consi;m,n Pi;m,n;u,v Ât−1
L ,i , (12)

where t denotes the t th diffusion iteration. Ni;m,n denotes the
r2 neighbors of coordinate (m,n), Consi;m,n is a constraint
which normalizes the diffusing weights. To guarantee that
all pixels are updated, the maximum iteration number of the
diffusion process is setted to Max(H, W ). In experiments, r
is set to 3. The diffusion procedure is detailed in Algorithm 1.
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D. Few-Shot Segmentation

As shown in Fig. 2, our few-shot segmentation network
is constructed based on a metric learning framework with
a support branch and a query branch. Following previous
works [6]–[9], [11], [31], [36], [37], we use VGG-16 [38]
or ResNet-50 [39] pre-trained on ImageNet as a backbone
and use convolutional features from res-block/vgg-block 2 and
3 of the backbone ResNet-50/VGG-16 to generate feature
maps. Following previous works [8], [10], the output stride of
support and query feature maps is 8, which is 1/8 of the input
image size. The support and query branches share a backbone
network for feature extraction. We follow CANet [8] without
iterative optimization and attention modules to construct the
segmentation network.

During training or testing, the inputs of support branch are
image-mask pairs. An element-wise product between support
features and support ground-truth mask is used to filter out
the background features. The preserved foreground features
are used as semantic representation to guide the segmentation
of the query image. After extracting foreground features of the
query image, we use the HFA, i.e., bilinear feature activation
and semantic diffusion, to fuse the support and query features.

The segmentation network is trained in an end-to-end fash-
ion driven by the Binary Cross Entropy (BCE) loss between
the ground-truth and the segmentation mask. We randomly
sample support-query pairs from the training set where the
support and query images containing objects from the same
categories. During inference, the fusion of the two modules
makes full use of detailed semantic information in support and
query images to achieve harmonic activation. The activation
maps generated by the HFA approach together with query
features are further processed by the query branch, segmenting
the target object(s) after a few convolutional operations.

IV. EXPERIMENTS

We first describe the experimental settings. We then report
the performance of the proposed few-shot semantic segmenta-
tion approach and compare it with the state-of-the-art methods.
We finally present ablation studies of the proposed approach.

A. Experimental Setting

1) Datasets: The experiments are conducted on MS
COCO [40] and PASCAL VOC [41] datasets. For MS COCO,
the experimental settings follow [10]. The dataset is divided
into 4 splits, each of which contains 20 categories. For each
split, 60 classes are used for training and the rest 20 classes
for test. For each split, 1000 pairs of support and query
images are randomly selected for performance evaluation.
We combine the PASCAL VOC 2012 with SBD [42] and
separate the combined dataset into 4 splits. Cross-validation
is used by sampling five classes as test categories Ctest =
4i + 1, . . . , 4i + 5, where i is the index of a split. The
remaining 15 classes are used for training. During evaluation,
1000 pairs of support and query images are randomly selected
to calculate the mean Intersection over Union (mIoU) and
binary Intersection over Union (FBIoU) of all categories
following previous works [9] [10] [8].

2) Training and Evaluation: For training, a batch size 8 is
used. The weight decay is 1e-4 and momentum is 0.9. The
segmentation model (network) is trained for 200000 steps
with the poly descent training strategy and the stochastic gra-
dient descent (SGD) optimizer. Data augmentation strategies
including normalization, horizontal flipping, random rotation,
random cropping and random resizing are adopted [8]. Fol-
lowing CANet [8], training images are resized to 321 × 321.
Both single-scale and multi-scale evaluation [8] strategies are
adopted for fair comparisons. For multi-scale evaluation, each
image is augmented to multi-scale images by 0.7 and 1.3 times
their original sizes and the predicted results of multi-scale
images are averaged. To reduce randomness, we average
mIoUs of multiple runs with different random seeds. Our
approach is implemented with PyTorch 1.0 and run on Nvidia
2080Ti GPUs.

3) Evaluation Metric: The mIoU calculates the per-class
foreground IoU and average the IoUs of all classes. The
FB-IoU calculates the mean of foreground and background
IoUs over all images regardless of the categories. We use both
IoU and FB-IoU for evaluation. For category k, IoU is defined
as IoUk = T Pk/(T Pk + F Pk + F Nk ), where T P, F P and
F N repsectively denote the numbers of true positives, false
positives and false negatives. mIoU is the average of IoUs of
all test categories and FB-IoU is the average of IoUs of all test
categories and the background. mIoUs are averaged on four
cross-validation splits.

B. Performance and Comparison

1) MS COCO: In Table I, we compare HFA with the
state-of-the-art methods on MS COCO. HFA outperforms the
state-of-the-art methods in 1-shot and achieves comparable
results in 5-shot settings. Under 1-shot setting, it improves
the baseline by 5.92%, respectively outperforming the PPNet
and RPMMs methods by 3.81% and 2.42%. Under the 5-shot
setting, it improves the baseline by 7.48%, respectively
outperforms the PANet and FWB methods by 4.26% and
10.31%, which are significant margins for the challenging task.

2) PASCAL VOC: In Table II and Table III, we compare
HFA with the state-of-the-art methods on Pascal VOC. HFA
outperforms state-of-the-art methods under both 1-shot and 5-
shot settings. Under 1-shot settings, with a VGG16 backbone,
it respectively outperforms the FWB [10] and RPMMs [36]
methods by 1.23% and 2.43%. Under the 1-shot settings,
with a ResNet50 backbone, HFA outperforms the PPNet [37]
method by 3.94% and achieves the new state-of-the-art.
Under the 5-shot settings, HFA is comparable with the
state-of-the-arts. Note that the PPNet and RPMMs used the
additional k-shot fusion strategies while HFA uses a simple
averaging strategy to fuse the five-shot results.

In Table IV, HFA is compared with the state-of-the-art
approaches with respect to FB-IoU, which reflects how well
full object extent is activated. Once gain, HFA outperforms the
compared approaches under both 1-shot and 5-shot settings.

3) Segmentation Examples: In Fig. 6, we show seg-
mentation examples by the baseline method and our HFA
approach. These examples clearly demonstrate that HFA pro-
duces significantly better results while the baseline approach
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TABLE I

PERFORMANCE OF 1-SHOT AND 5-SHOT SEMANTIC SEGMENTATION ON THE MS COCO DATASET. FWB USES THE RESNET101 BACKBONE WHILE
OTHER APPROACHES USE THE RESNET50 BACKBONE.* DENOTES METHODS WITH MULTI-SCALE EVALUATION

TABLE II

PERFORMANCE OF 1-WAY 1-SHOT SEMANTIC SEGMENTATION ON PASCAL-5i . * DENOTES MULTI-SCALE EVALUATION

TABLE III

PERFORMANCE OF 1-WAY 5-SHOT SEMANTIC SEGMENTATION ON

PASCAL-5i . * DENOTES MULTI-SCALE EVALUATION

tends to produce more missing segmentations, Fig. 6(a), and
false labelings, Fig. 6(b). The good segmentation results
of HFA are based on the sophisticated harmonic activation
mechanism. Such a mechanism can fully leverage the semantic
correlation between the support and query images and seman-
tics within the query image to activate complete object extent.

TABLE IV

COMPARISON OF FB-IOU PERFORMANCE OF 1-SHOT AND 5-SHOT SEG-
MENTATION ON THE PASCAL VOC 2012 DATASET

4) Failure Cases: We present some failure cases
in Fig. 6(c). The first failure example is a bicycle, which
contains hollow regions. The strong activation on the gear
of the bicycle is falsely propagated to the hollow regions
by semantic diffusion. The second example is a boat, which
is falsely segmented for the mirrored reflection regions
connected with the true object.
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Fig. 6. Segmentation examples. While the proposed HFA approach correctly segments the objects, the baseline CANet approach tends to produce missing
segmentation (a) and false labeling (b). Failure examples (c) by HFA. The prefix ‘AM-’ refers to activation map.

C. Ablation Studies

1) Bilinear Feature Activation (BFA): In Table V, with
BFA, we improve the segmentation performance by 3.94%
(55.88% vs. 51.94%). We validate how BFA preserves the
detailed semantic information from the perspective of acti-
vation accuracy. The sums of activation confidences within
the target region (true positives) are defined as pt , and those

outside the target region (false positives) as p f . Both pt and
p f are scalars. We define the activation accuracy as

pt −p f
pt +p f

.
Activation accuracy is calculated on feature maps with float
values before the segmentation module, so that it can precisely
reflect how well the semantic information is preserved and
transferred. We sample 500 images per category and cal-
culate the activation accuracy of activation maps generated
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TABLE V

ABLATION STUDY OF THE PROPOSED APPROACH ON PASCAL VOC.
“LOW-RANK DECOM.” DENOTES BILINEAR FEATURE ACTIVATION

WITH LOW-RANK DECOMPOSITION WHILE “BILINEAR” DENOTES

BILINEAR FEATURE ACTIVATION WITHOUT LOW-RANK

DECOMPOSITION

Fig. 7. Comparison of activation accuracy of bilinear feature activation
(intermediate activation maps) and CANet.

Fig. 8. Activation maps with different ranks (L).

by bilinear feature activation (intermediate activation maps)
and CANet [8]. From Fig. 7 one can see that the activation
accuracy of bilinear feature activation is significantly higher
than that of CANet, validating it retains detailed semantic
information of support features.

2) Low-Rank Decomposition: In Table V, when using the
low-rank decomposition to approximate bilinear activation,
the performance drop is negligible (0.26%), validating the
effectiveness of Tucker decomposition. In Fig. 8, activation
maps with different ranks (L) are presented. It can be seen
that a larger rank contributes more complete activation. The
impacts of rank on mIoU are shown in Fig. 9, according to
which we set the rank L = 3.

3) Semantic Diffusion: This procedure also significantly
improves the performance, as shown in Tab V. With
semantic diffusion without bilinear activation, we improve the

TABLE VI

INFERENCE TIME PER EXAMPLE IN SECONDS. THE EXPERIMENT IS PER-
FORMED WITH A SINGLE NVIDIA-2080-TI GPU ON PASCAL-5I. �θ

DENOTES THE INCREASED NUMBER(TEN THOUSAND) OF PARAME-
TERS AGAINST BASELINE(CANET)

Fig. 9. mIoU with different ranks (L) on one-shot and five-shot settings.
Experiments are conducted on the PASCAL VOC dataset.

Fig. 10. Activation maps with different diffusion iterations. The maximum
iteration number is 40.

segmentation performance by 2.88% (54.82% vs. 51.94%).
This shows that the intrinsic semantic consistency with the
query image is important for few-shot segmentation, which is
unfortunately ignored by existing works. In Fig. 10, activation
maps under different iterations of diffusion are presented.

4) HFA: With a combination of bilinear feature activation
with semantic diffusion, our HFA approach improves the
segmentation performance by 4.84% (56.78% vs. 51.94%),
which validates that the two modules are complementary and
can be fused to enforce harmonic feature activation.

5) Inference Time: In Table VI, the inference time of
different modules are evaluated. With the VGG network, HFA
(Low-rank) averagely uses 0.096 seconds to segment an image
while HFA (Bilinear) uses 0.432 seconds. With the ResNet-
50 network, HFA (Low-rank) averagely uses 0.162 seconds
while HFA(Bilinear) uses 0.621 seconds. The 3.8 ∼ 4.5 times
speed up shows that the proposed low-rank decomposition
can significantly reduce the inference time with negligible
performance cost. Meanwhile, the time cost of the semantic
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Fig. 11. Category-wised performance gains on the PASCAL VOC
dataset. Our method(HFA) achieves significant improvements against the
baseline(CANet).

TABLE VII

PERFORMANCE UNDER DIFFERENT LEARNING RATE SCHEDULES.
“FIXED” DENOTES SETTING THE LEARNING RATE TO A FIXED

VALUE, “REDUCE” DENOTES REDUCING THE LEARNING RATE

BY ITERATIONS, AND “POLY” MEANS THE POLYNOMIAL

LEARNING RATE

diffusion module is negligible. It uses only additional 0.001s
(0.097 vs. 0.096).

6) Learning Rate Schedule: We compared commonly used
learning rate schedules. The learning rate in PANet [9] is
reduced by 0.1 every 10,000 iterations, and the learning rate in
CANet [8] and FWB [10] is set to a fixed value. In Table VII,
the polynomial learning rate schedule brings 0.14% perfor-
mance gains against “Reduce” and 0.19% performance gains
against “Fixed”. When using the polynomial learning rate
schedule, the testing results are more stable although it has
negligible impact on the final performance.

7) Fusion Strategy: We compare different fusion strategies,
including attention [6], cosine similarity [7] and concatena-
tion [8] and find that bilinear feature activation achieves the
best performance, Table VIII.

D. Statistic Analysis

1) Category-Wise Performance: In Fig. 11, we compare
the category-wise segmentation performance on Pascal VOC.
We sample 200 images from each category and calculate the
performance gains. The categories of the largest performance
gains are “sofa”, “tv/monitor”, “boat”, and “bird”. These
categories can be largely affected by object views and poses.
HFA has larger performance gains upon these categories,
showing its potential to handle view and pose variations.

2) Object Size and mIoU: To further verify the effec-
tiveness of the proposed approach, we analyze the relation
between the sizes of target objects with mIoUs. We sample
2000 support-query pairs and calculate their sizes and mIoUs.
In Fig. 12, HFA achieves averagely higher mIoU with respect
to the distribution of object sizes. This attributes to the seman-
tic diffusion procedure, which propagates semantics across
object extent for complete segmentation.

3) Model Discriminability: We sample and test 3500 images
to draw the confusion matrix of object categories. As shown
in Fig. 13, the x-coordinate indicates the ground-truth of

TABLE VIII

PERFORMANCE UNDER DIFFERENT FUSION STRATEGIES

Fig. 12. Comparison of mIoUs over object size. The mIoU of HFA is
averagely higher than that of the baseline approach.

Fig. 13. Confusion matrix for the object categories on PASCAL VOC. HFA
reduces the semantic confusion between categories and improves the model
discriminability.

TABLE IX

MEAN-IOU PERFORMANCE OF 2-WAY 1-SHOT SEGMENTATION ON

PASCAL VOC

samples while the y-coordinate indicates the predictions of
the compared segmentation models. It can be seen that the
baseline method tends to produce more false predictions for
the categories including “boat”, “motorbike”, “person”, and
“dining table”. When handling hollow and slender objects
such as “bicycle” and “plotted plant”, semantic diffusion might
falsely propagate the activation confidence to hollow and/or
slender regions (e.g., gears, tyres, branches and leaves). HFA
significantly reduces false predictions for most categories,
demonstrating improved model discriminability.

E. Extended Experiments

1) 2-Way 1-Shot Segmentation: We have compared 2-way
1-shot segmentation performance with those of CANet [8] and
PPNet [37], and PPNet is the state-of-the-art method under
the 2-way 1-shot setting. We implement 2-way segmentation
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TABLE X

PERFORMANCE OF MANET AND MANET+HFA

by introducing a simple divide-and-conquer strategy. We first
extract features from these 2 given support images, and use
the support features to independently guide the segmentation
of the query image to obtain segmentation results. We then
concatenate the segmentation results and choose the class label
with the highest confidence at each pixel location to implement
2-way segmentation. From Table IX, one can see that HFA
achieves the best performance.

2) Video Object Segmentation: Our approach can be
applied to few-shot video segmentation [46]–[49]. By using
MANet [49] as the baseline, replacing the concatenation
operation of MANet with the bilinear feature activation (BFA)
module, and plugging the semantic diffusion module after
BFA, we implemented video object segmentation. Experiment
results in Table X show that HFA improves the performance
of the baseline method by 1.6% (76.5% vs. 74.9%).

V. CONCLUSION

We proposed a novel few-shot segmentation approach,
termed harmonic feature activation (HFA), and implemented
precise support-to-query semantic transform by incorporating
the features of both query and support images. HFA is formu-
lated as a bilinear model, which takes charge of the pixel-wise
dense correlation (bilinear feature activation) between query
and support images. HFA incorporates a low-rank decomposi-
tion procedure, which greatly speeds up bilinear feature activa-
tion. A semantic diffusion procedure is fused with HFA, which
further improves the global harmony and local consistency
of the feature activation. HFA improved the performance of
few-shot segmentation, in striking contrast with state-of-the-art
approaches. The harmonic feature activation provides a fresh
insight to the challenging few-shot learning problem.
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