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Abstract— Scene images usually involve semantic correlations,
particularly when considering large-scale image data sets. This
paper proposes a novel generative image representation, corre-
lated topic vector, to model such semantic correlations. Oriented
from the correlated topic model, correlated topic vector intends
to naturally utilize the correlations among topics, which are
seldom considered in the conventional feature encoding, e.g.,
Fisher vector, but do exist in scene images. It is expected that
the involvement of correlations can increase the discriminative
capability of the learned generative model and consequently
improve the recognition accuracy. Incorporated with the Fisher
kernel method, correlated topic vector inherits the advantages
of Fisher vector. The contributions to the topics of visual words
have been further employed by incorporating the Fisher kernel
framework to indicate the differences among scenes. Combined
with the deep convolutional neural network (CNN) features and
Gibbs sampling solution, correlated topic vector shows great
potential when processing large-scale and complex scene image
data sets. Experiments on two scene image data sets demonstrate
that correlated topic vector improves significantly the deep CNN
features, and outperforms existing Fisher kernel-based features.

Index Terms— Correlated topic vector, Fisher kernel,
generative feature learning, semantic correlation.

I. INTRODUCTION

SCENE classification has been widely explored, promoting
related computer vision tasks including object recogni-

tion [1], [2], image retrieval [3]–[5], and intelligent robot nav-
igation [6], [7]. A scene image is usually composed of several
semantic entities e.g., sky, rock, street, and car. These entities
are often organized in unpredictable layouts [8], [9] and shared
with multiple categories, which invite intra-class variability
and inter-class similarity for scene recognition. Scene labels,
e.g., coast, village, coast, and inside city, are equivalently
the overall cognition and high-level abstract of scene images,
which are difficult to be captured using low-level visual

Manuscript received February 24, 2016; revised December 19, 2016 and
March 18, 2017; accepted March 29, 2017. Date of publication April 13, 2017;
date of current version May 9, 2017. This work was supported in part by the
National Nature Science Foundation of China under Grant 61401426 and
Grant 61671427, in part by the Beijing Municipal Science and Technology
Commission under Grant Z161100001616005, and in part by the Science
and Technology Innovation Foundation of Chinese Academy of Sciences
under Grant CXJJ-16Q218. The associate editor coordinating the review of
this manuscript and approving it for publication was Dr. Paul Rodriguez.
(Corresponding author: Jianbin Jiao.)

The authors are with the School of Electronic, Electrical and
Communication Engineering, University of Chinese Academy of
Sciences, Beijing 101408, China (e-mail: weipengxu11@mails.ucas.ac.cn;
fqin1982@ucas.ac.cn; wanfang13@mails.ucas.ac.cn; zhuyi215@mails.
ucas.ac.cn; jiaojb@ucas.ac.cn; qxye@ucas.ac.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2017.2694320

features. These factors make scene image recognition much
more challenging than object-centric image classification.

The conventional visual recognition method extracts local
visual descriptors and encodes them into a global represen-
tation of one image. Many efforts on this strategy for scene
recognition focus on two problems: (1) how to characterize
semantics, commonly known as topics or themes, explic-
itly or implicitly, and (2) how to encode superior scene repre-
sentation based on the semantics. The first class of semantics
consists of object-centric approaches that model pre-defined
explicit semantics or scene categories. It annotates regions
with corresponding explicit themes and trains specific theme
classifiers. One popular strategy of theme labeling leverages
a group of object detectors pre-trained on available object-
centric image datasets [10]. The other one utilizes given scene
categories and assumes that a specific scene category is shared
for all the patches of one image [11]. These approaches
rely on theme performance heavily since they attempt to
independently discover potential themes. The second class of
semantics devotes to scene-centric representation [12]–[15].
It is learned from an entire image and generates a holistic
description with the aid of implicit themes. And it works
without explicit image segmentations, manual theme annota-
tions or extensive object detections.

The scene-centric representation is conventionally built on
Bag-of-Words (BoW) that encodes an image as an orderless
collection of local descriptors. BoW takes cluster centers
resulted from k-means as semantics and encodes seman-
tic histograms as features. Without any doubt, the lossy
BoW quantization procession of local descriptors is bound
to induce word ambiguity [16] including synonymy (different
visual words may represent the same semantic) and polysemy
(the same visual word may represent different semantics in
different contexts). As shown in the first row of Fig. 1, BoW
features present significant differences between the first two
images even though both images belong to the village scene,
which indicates its limited capacity for the intra-class variance.
Generative models from statistical text literature, e.g., prob-
abilistic Latent Semantic Analysis (pLSA) [17] and Latent
Dirichlet Allocation (LDA) [18], improve BoW by dealing
with the ambiguity problem [16], and introduce intermediate
latent topic features that are scene-centric [12]–[14]. In the
third row of Fig. 1, it is observed that a group of themes,
sky-rock-house-tree, generally co-exist in the village scene.
Obviously, a scene exhibits a strong semantic/theme corre-
lation property, and more importantly, this property is spe-
cific to a scene category distinguishing itself from others.
Unfortunately, such correlation is ignored in most existing
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Fig. 1. Examples of village and coast scene images. In the first row,
histograms of visual words are shown. Themes are provided for three images,
among which two images of scene village and one image of scene coast
present in the second row. Their corresponding theme probability distributions
are shown in the fourth row.

work besides BoW. For example, LDA imposes Dirich-
let distribution prior on the topic proportions [18], which
poorly assumes that themes/topics are independent of each
other.

In this paper, we propose a new feature representation,
named Correlated Topic Vector (CTV), which utilizes the
Correlated Topic Model (CTM) [19], [20] to capture the cor-
relations between themes as a latent semantic representation.
CTM replaces the Dirichlet distribution prior of the classical
Latent Dirichlet Allocation model with a more flexible logistic
normal distribution [21] that incorporates a covariance mea-
surement among topics. This makes it possible to describe
more realistically the fact that the presence of one latent topic
may be correlated with the presence of another. However,
the latent semantic representation derived from CTM with the
conventional way that just considers the latent topic distribu-
tions [13], [14], fails to perform well consistently. This similar
case happens to other topic models [22], e.g., pLSA and LDA,
the latent topic representations of which are generally believed
with limited discriminative capability due to the unsupervised
learning.

The proposed CTV further explores the contributions of
low-level visual words to the learning of middle-level topics
from the information geometry view in essence. This is
different from BoW and latent semantic representations since
BoW depends on visual word co-occurrence counts and latent
semantic representations focus on topic distributions. For
two images from different categories, regions with similar
appearances tend to follow the same visual words and limited
topics hold insignificant differences for recognition tasks. Built
on Fisher Kernel [23], the CTV takes these properties into
account, combining the benefits of generative and discrimina-
tive approaches.

To demonstrate the up to date performance, the pro-
posed CTV is implemented on Convolutional Neural
Network (CNN) [24] features. For scene recognition, it is
demonstrated that the features extracted from a fully connected
layer of CNN trained on ImageNet [25] show a clear semantic
clustering, and the latter layers learn semantic features [26].
Therefore, it can be utilized as an alternative representation
without any object detection or segmentation efforts. It is
an intuition that regarding CNN feature of the hidden fully
connected layer as a learned soft-assignment word histogram,
avoiding to build a vocabulary relying on CNN as local
descriptors.

To summarize, this work has the following contributions:
1. Rooted in the classical Correlated Topic Model (CTM),

we propose a new image descriptor, Corrected Topic Vec-
tor (CTV), targeting at modeling and leveraging the topic
correlations for scene image classification.

2. For the first time, we derive the formal expression of CTV
in the Fisher Kernel space, making it theoretically possible
to use Fisher Kernel to enhance the discriminative capacity
of CTV.

3. We provide an efficient Gibbs sampling solution and
make it feasible to train CTM and extract CTV on large-scale
datasets.

In the remainder of the paper, we review related work
in Section II and discuss the details of correlated topic vector
in Section III. Experimental results are provided in Section IV.
We conclude in Section V.

II. RELATED WORK

Inspired from text categorization [27], BoW [28] has been
widely used for image recognition. It characterizes an image
with visual word co-occurrence. Hard word assignments and
histogram encoding induce the loss of image spatial infor-
mation and the semantic ambiguity for each word, let alone
semantic correlation that is a noticeable attribute for scene
recognition. The intermediate “theme” or “semantic” represen-
tation for scene images is an extension of BoW and attempts
to fill the semantic gap between the low-level image features
and the high-level semantic concepts.

Exploiting explicit themes assigned directly to
patches or regions suffers from theme annotation
efforts or unreliable detection results of diverse objects.
Li et al. [10], [29] propose “Object Bank” (OB) that deploys
a large number of object detectors at multiple scales to obtain
the probability of objects appearing at each pixel. It detects
177 categories of objects at 12 scales and 21 spatial pyramid
grids. But it is hard to generalize OB to large-scale scene
image sets such as SUN 397 [30] or Places 205 [23], duo to
extensive detections. Besides, Li et al. manually illustrate the
identities and semantic relations among 177 objects carefully
selected from 1000 objects; however, these relations are not
employed for scene recognition.

Some works are devoted to Fisher Kernel [31] to improve
BoW. Aitchison [21] provide a formulation of Fisher Kernel
for classification tasks. Perronnin and Dance introduce Fisher
Kernel derived from Gaussian Mixture Models (GMM) for
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the image representation. The resulted Fisher vectors benefit
from powerful local feature descriptors [32]. The Vector of
Locally Aggregated Descriptors (VLAD) [33] improves BoW
to produce a compact representation. Fisher kernels have
already been applied to the problem of image categorization
built on generative models [34]. Dirichlet-based GMM Fisher
Kernel [35] is applied as a way of feature transformation for
image classification, assuming that L1-normalized histogram-
based local descriptors could be modeled by the Dirichlet
distribution.

CNN features have recently achieved spectacular results on
the ImageNet object recognition challenge. Their success has
encouraged the community to use CNN feature embedding
for scene classification to replace the conventional SIFT-FV
architecture. For example, Gong et al. represent a scene
image as a collection of fully connected layer activations
extracted from local patches and build VLAD embedding for
image recognition. Dixit et al. incorporate semantics into the
Fisher Kernel framework. They extract CNN features of local
patches and consider them as Semantic MultiNomial (SMN)
descriptors. When local semantic descriptors are modeled as
a multinomial distribution, with the help of Dirichlet Mixture
Models (DMM), the DMM FV is induced as a more natural
embedding than the GMM FV. Besides, the natural parameteri-
zation transformation alleviates highly non-Euclidean property
of SMN descriptors. A semantic FV is then computed as a
GMM FV in the space of the natural parameters.

A considerable number of works built on the Fisher Kernel
framework for image recognition have made great strides, but
they are generally assumed that patches of all the images
are independently and identically drawn from the involved
generative models. Obviously, the independent and identically
distributed (i.i.d.) assumption violates intrinsic image charac-
teristics. In addition, semantic correlation is seldom considered
in existing works. Considering an image as an unordered
set of regions, Cinbis et al. [36], [37] utilize the Dirichlet
prior distribution to parameterize the variables varying across
images. They consider models, e.g., Latent Dirichlet Alloca-
tion and latent Gaussian Mixture Models, which capture the
dependencies among local image regions. For latent GMM,
they treat the parameters of GMM as latent variables with
prior distributions learned from data, and apply the Fisher
Kernel principle by taking the gradient of the log-likelihood
of the observed data with respect to the hyper-parameters.
These hyper-parameters control the priors on the latent model
parameters. Despite the wide exploration of latent semantics in
these works, the semantic correlation remains not considered.

III. METHODOLOGY

Based on the hypothesis that CTM could reasonably model
the relationship among topics for latent semantic features and
Fisher Kernel can further enhance the discriminative capacity,
the task of scene classification will be pretty straightforward:
firstly estimate the parameters of CTM from a training set, and
then build the Correlated Topic Vector with the aid of Fisher
Kernel framework for both the training and test images. The
CTV will be utilized as the final feature representation, which
can be fed to a linear SVM classifier to recognize different

Fig. 2. Correlated Topic Model learning and Correlated Topic Vector
encoding.

TABLE I

GENERATIVE PROCESS OF THE TOPIC MODEL

scene categories. In this section, the detailed derivation and
solutions of CTV will be discussed. We firstly introduce latent
semantics, by which semantic co-occurrence implies certain
correlations. We then construct the CTV by utilizing both
Variational Bayesian (VB) method and Gibbs Sampling (GS)
method. The basic scheme of CTV encoding has been shown
in Fig. 2.

A. Latent Semantic Representation

CTM is introduced as a generative model for scene image
data. The motivation is two folds: firstly to remove the inde-
pendence assumptions implicitly of the Dirichlet distribution
on topic proportions [36], [37], and secondly to further model
the correlation structures among topics by a logistic normal
prior [39]. The generative process of the CTM has been stated
in Table I.

Given a dataset that consists of D images, each image
is represented as a collection of visual words from a
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Fig. 3. Feature visualization using t-sne [38]. (Best viewed in color.)

vocabulary containing V visual terms. Formally, let wd =
{wd,n, n ∈ 1, ..., Nd } denote the visual word indices corre-
sponding to Nd patches sampled in an image d , where wd,n

is the word assignment for its n-th patch. In CTM, an image
is modeled as mixtures over K latent topics, where each topic
is represented by a multinomial distribution over V visual
words. Specifically, given a certain topic, each word is sampled
with respect to a multinomial distribution and its probability
is parameterized by a matrix β = (βi j )K×V .

The essential of CTM is a more flexible logistic normal
distribution [21], which has been employed to model the
realistically latent topic structure. As discussed in Section I,
this is hinted at the fact that one topic may be correlated with
others. Since CTM is based on the logistic normal distribution,
such correlation among topics could be reasonably modeled
by incorporating the covariance structure [20]. The logistic
normal distribution, parameterized by K dimensional mean
vector μ and K × K covariance matrix �, both of which
are hyper-parameters, is then imposed on topic proportions as
a prior in CTM. The topic proportion of image d is termed as
θd = [θ1

d , ..., θ i
d , ..., θ K

d ], where

θ i
d = f (ηi

d ) = exp ηi
d/

∑
i ′

exp ηi ′
d , (1)

and i or i ′ indicates the i -th or i ′-th topic of K topics.
It assumes that ηd is subject to a normal distribution N {μ,�}.
Consequently, f (ηd) maps ηd to its mean parameterization θd

located as a point on the K − 1 topic simplex. To highlight,
the parameter � interprets the relationship among topics.

As shown in Fig. 2, the topics are shared by all images in
the dataset. But the topic proportions, i.e., θd , definitely vary
stochastically across images, as they are randomly drawn from
the prior distribution. After θd are obtained, words could be
drawn from each topic in the collection according to β.

It is very straightforward to make the hypothesis that the
topic proportions θ for each image could be utilized as the
desired latent semantic representation. Two main reasons are:
(1) topic proportions θ remain the image-specific property;
(2) θ imply correlation-ship among topics stemming from
a logistic normal prior. To demonstrate the performance of
CTM, in Fig. 3, we visualize three types features on the
SCENE 8 dataset [40]: BoW, latent semantic representations
of LDA and CTM. Three measures, including the cluster

Fig. 4. Performance of CTM based latent semantic representation on the
SCENE 8 dataset.

purity [41], Dunn Validity Index (dvi) [42], and the average
classification accuracy (acc) [43], are utilized to evaluate
these features. Cluster purity denotes the ratio between the
dominant class in the cluster and the size of the cluster.
The larger the purity is, the better the clustering solution
is [41]. The dvi identifies how compact the clusters are [42].
It can be observed that latent semantic features derived from
CTM demonstrate a superior cluster effect for all the scene
categories in the semantic feature space, as well as a better
classification performance.

It is noted that the performance of CTM based latent
semantic representation can not consistently increase with the
increasing number of topics yet. Experiments shown in Fig. 4
validate this situation. Given 200 and 256 vocabulary sizes,
the topic representations perform respectively better and better
with the topic number increasing, but the accuracy decreases
when the topic number is larger than 50 and 60, respectively.
A similar situation of LDA has been also demonstrated
in [22]. This limitation of latent semantic representations
usually does not result from the poor statistical estimation,
but from the intrinsic ambiguity of the underlying BoW rep-
resentation [15]. Another reason is that latent semantic features
stemming from word co-occurrence fail to utilize the statistical
information between semantics/topics and words. These two
reasons explain why latent features derived from CTM should
not be simply utilized, although it better characterizes scene
semantics through the modeling of the correlation structure
among topics.
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To further encode informative features based on semantics,
we attempt to explore the contributions of low-level words to
the learning of middle-level semantics from the information
geometry view. To this end, we propose the feature encoding
scheme of Correlated Topic Vector aided by the Fisher Kernel
Framework [23], which can integrate the benefits of generative
and discriminative approaches.

B. Correlated Topic Vector

We first discuss the derivation of a formal expression
of CTV features for an image by utilizing the Variational
Bayesian method. According to the log-likelihood, to derive
the CTV, we mainly compute the Fisher score and the
Fisher information matrix with respect to the model parame-
ters �= {μ,�, β}, i.e., hyper-parameters {μ,�} and global
parameter β.

The log-probability of an image d is L = log p(wd |μ,�, β)
defined by:

p(wd |μ,�, β)

=
∫

p(η|μ,�)(

Nd∏

n=1

∑

zn

p(zn|η)p(wd,n|zn, β))dη, (2)

where zn denotes a vector of topic assignments of word wd,n

with only one component equivalent to 1 and others to 0,
i.e., the occurrence of word n in image d .

It is obvious that the logistic normal prior distribution of
topic proportions p(η|μ,�) is non-conjugate to the multino-
mial posterior distribution of topic assignments p(zn|η) [20].
As a result, it is hard to analytically compute the integrals in
Equation (2). In other words, we cannot directly derive the
gradient of the log-likelihood to obtain CTV features.

We resort to the Variational Bayesian method [44] to derive
the formal expression. Variational Bayesian is an approxi-
mate approach that optimizes a deterministic objective lower
bounded on the data log-likelihood [44]. With mean-field
assumptions [19], the original graphic model is simplified with
variational parameters {λ, ν2, φ}. In this case, L = LV B +
DK L(q||p) ≥ LV B , where DK L is the Kullback-Leibler (KL)
divergence between distribution q and p. LV B denotes the
lower bound of log-likelihood. L can be approximated as LV B :

LV B = Eq [log p(η|μ,�)] +
Nd∑

n=1

Eq [log p(zn|η)]

+
Nd∑

n=1

Eq[log p(wd,n|zn, β)] + H (q), (3)

where Eq [·] is the expectation with respect to the variational
distribution q whose parameters are {λ, ν2, φ}, and H (q)
denotes the entropy of this distribution. Variational parameters
{λ, ν2, φ} are K -dimension image-specific vectors. Details on
how to obtain variational parameters {λ, ν2, φ} and model
parameters {μ,�, β} can be found in [20].

Now, we derive the formal expression of the CTV for
image d based on the learned model parameters �= {μ,�, β}.
Its form is ϕ[�] = I[�]−1/2u[�]. u[�] = ∂L/∂� denotes

the Fisher score which is the partial derivative of the log-
likelihood, and I[�]=E[u[�]T u[�]] is the Fisher information
matrix. u[�] represents the velocities passing through � along
the coordinate curves, while I[�] plays the role of a metric
tensor. Under certain regularity conditions, the Fisher infor-
mation matrix is the negative of the expectation of the second
derivative with respect to �. I[�]=E[u[�]T u[�]] can be written
as I[�] = −E[∂2L/∂�2].

The Fisher scores based on hyper-parameters {μ,�} are

u[μ] = ∂L/∂μ = �−1(λd − μ), (4)

u[�−1] = ∂L/∂�−1

= 1/2(� − diag(ν2
d) − (λd − μ)T (λd − μ)). (5)

The Fisher score based on global parameter β is
u[β] = (u[βi j ])K×V = (∂L/∂βi j )K×V , and

∂L/∂βi j =
Nd∑

n=1

φd,niw
j
d,n/βi j . (6)

μ and � are parameters of the true multivariate Gaussian dis-
tribution, and they are learned from all the images. λd and ν2

d
are fit from a single observed image data wd . (λd − μ)
measures differences between the mean value of true prior
distribution and its approximated variational distribution. It is
similar to the term �−diag(ν2

d), which measures the variance
differences. φd,ni is a multinomial parameter and denotes how
likely a word wd,n occurs given the topic i . u[β] can be
regarded as the expectation of word occurrence whose pos-
sibility φd,ni is weighted by the global parameter β. To avoid
matrix multiplication, we derive the partial derivative of the
log-likelihood on �−1, the inverse of � in Equation (5). The
derivations of Equations (4)-(6) are provided in the Appendix.

Fisher information matrix can be simply expressed as:

I[μ] = −E[∂2L/∂μ2] = �−1, (7)

I[�−1] = −E[∂2L/∂(�−1)2], (8)

I[β] = −E[∂2L/∂β2
i j ]

= −
Nd∑

n=1

p(wd,n|θd)∂2 L/∂β2
i j

= −
Nd∑

n=1

p(wd,n|θd)

Nd∑

m=1

φd,miw
j
d,m/β2

i j

= −
Nd∑

m=1

φd,miw
j
d,m/β2

i j . (9)

We have immediately three approximated Fisher Vectors on
{μ,�, β}, where ϕ[μ] = I[μ]−1/2u[μ], ϕ[�] = I[�]−1/2u[�],
ϕ[β] = I[β]−1/2u[β]. CTV is then obtained by concatenating
and normalizing these three vectors. The normalization can be
a power normalization or L2-normalization [45], [46].

C. Gibbs Sampling Based CTV

The Variational Bayesian method mentioned in
Section III-B has a deterministic log-likelihood [20], [47],
and can be utilized to derive the formal expression of
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the CTV. We denote VB based CTV as CTV-VB. However,
in the training stage, the learning of the CTM parameters
suffers from the costly computations for the approximate
Variational Bayesian methods, due to the essential problem
of the non-conjugate priors [47], [48]. This problem is
expected to aggregate along with the increasingly large and
complex datasets. To alleviating this limitation, we resort to
the scalable Gibbs sampling algorithm [47], which is simple
to carry out and can be essentially parallelized to suit the
large-scale data. The Gibbs sampling based CTV is denoted
as CTV-GS in the following discussion.

Gibbs sampling avoids deterministic computations of
integral terms by subsequently applying a stochastic tran-
sition operator to a randomly drawn latent variable rather
than optimizing for a lower bound of the log-likelihood,
so that it is hard to directly derive the specific form for
CTV with Gibbs sampling. One strategy is to approximate
the log-likelihood of Gibbs sampling solution. The intu-
ition comes from the evidence that LGS plus the expec-
tation of DK L equals to LV B [49], LGS = LV B −
Eq(zT |w){DK L[q(y|zT , x)||r(y|zT , x)]} ≤ LV B , where x is
the observed data, zT is the outcome of iteratively sampling,
y = z0, z1, ..., zT −1 are a series of state variables for each
iteration, and r(y|zT , x) is a specific approximated distribution
of q(y|x, zT ). DK L is the KL divergence between distribution
q and r [49]. LV B can be regarded as the upper bound
on LGS . Therefore we can approximate the log-likelihood of
Gibbs sampling controlled by the expectation of DK L . For
the CTV-GS, we try to utilize the benefits of both Variational
Bayesian and Gibbs sampling to construct CTV. Specifically,
the CTV derivations with the Variational Bayesian approach
provide the general expression of the CTV features. For
CTV-GS whose encoding still relies on the derived formal
expression of CTV-VB, the involved parameters are learned
with Gibbs sampling while those of the CTV features are
learned by Variation Bayesian method in CTV-VB. Both
Variational Bayesian and Gibbs sampling methods are approx-
imations of the log-probability of CTM, which characterizes
the same dependence among variables in a hierarchical graphic
model. The feasibility of such approximation is validated by
the experimental results in Section IV.

D. Implementation

We evaluate the proposed CTV based on local descriptors
extracted using CNN [24]. Deep CNN has demonstrated
remarkable recognition performance [24], [26], [50] and its
activated features of deep layers present an excellent gener-
alization of image representation and powerful semantic clus-
tering results [26]. Especially, the rectified linear unit (ReLU)
transformation guarantees all the features from deep layers
are non-negative. Therefore, they can be considered as a
type of soft-assignment BoW with which we implement the
deep-BoW.

The conventional CNN-BoW simply encodes BoW by
replacing local descriptors [11], [37], [43], e.g., SIFT,
with binarized CNN descriptors aided by a clustering
derived vocabulary [11], [14], [37], [43]. The utilization of

Fig. 5. Pipeline of building deep-BoW.

Fig. 6. Comparison of CNN-BoW and deep-BoW on the MIT Indoor
67 dataset.

soft-assignment will not only avoid these costly algorithms but
also remain more information. The implementation of deep-
BoW consists of three procedures: local feature extraction,
feature encoding, and pooling. The pipeline of building deep-
BoW for one image is shown in Fig. 5. In detail, an image
is first divided into patches and sampled on a dense grid with
P × P pixels and a stride size with S-pixel. For each divided
patch, fully connected CNN outputs of the seventh (FC7) layer
are extracted as local descriptors. These local CNN features
are regarded as the encoded local soft-assignment BoW vectors
with real activation values. To meet different model complex-
ity requirements, the BoW vectors with desired dimensions
could be obtained with a feature element sampling strategy,
e.g., fixed sampling, average sampling, or max sampling,
as shown in Fig. 6. Finally, a global soft-assignment deep-
BoW is achieved by average pooling of local BoW vectors
across patches. To facilitate the learning of CTM whose input
values are integers, the soft-assignment based deep-BoW with
real values is normalized into the final deep-BoW with integer
values. Compared with the conventional CNN-BoW, deep Bow
benefits from the rich semantic knowledge of the deep CNN
networks and involves only simple linear algebraic operations.
Experimental comparison in Fig. 6 clearly shows that the
proposed deep-BoW outperforms CNN-BoW which is derived
from clustering methods, e.g., GMM and k-means, in all
scenarios with different sampling strategies.

The deep-BoW vectors will be fed to the CTM in the
training stage. The learning of the CTM is based on the
VB or GS method. Given the learned CTM parameters,
these vectors will be also utilized to generate CTV features
with Equations (4)-(9) for classification in the test stage.
We implement CTV-VB and CTV-GS (denoted as CTVs for
simplicity), at three scale levels (i.e., different P in small scale,
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TABLE II

COMPARISON ON THE SUN 397 DATASET

middle scale, and large scale). Because of high dimensions of
Fisher Vectors, we do not concatenate the three-scale original
CTV features to get aggregated multi-scale CTV. Our multi-
scale CTV-VB or CTV-GS is derived from the concatenation
of SVM scores for three scale features.

IV. EXPERIMENTS

In this section, we evaluate the performance of the proposed
CTV and compare it with the most relevant approaches.
Following the experimental settings in [32], [46], and [52],
we train one-vs-all linear SVM classifiers on the CTV features
and evaluate them with average classification accuracy [43].

A. Setup

1) Datasets: We conduct experiments on two benchmark
datasets: SUN 397 [30], [52] and MIT Indoor 67 [53]. SUN
397 is a large-scale dataset for scene recognition. It contains
397 scene categories, and each of ten splits has 50 training and
50 test images per category. MIT Indoor 67 contains 67 scene
categories. Images have been split into 5360 training images
and 1340 test images, i.e., 80 training and 20 test images per
category.

2) Experimental Setup: An image is resized to
256×256 pixels firstly. Three scale levels, which correspond
to 256×256, 128×128, 64×64 pixels for the patch sizes,
are chosen in this experiment. Patches are sampled with the
stride of 32 pixels on all the scale levels. CNN FC7 features
are extracted using the Caffe package [50] pre-trained on
the ImageNet dataset [25] and the Places dataset [23].
To learn involved parameters for CTV, the deep-BoW with
max sampling is fed to the VB based CTM or GS based
the scalable CTM [47]. Since Fisher information matrix is
immaterial as pointed in [22], we approximate CTV with its
Fisher score in the experiments.

In the followings, the deep CNN network trained on
the ImageNet dataset [25] is abbreviated to CNN-I, and
that trained on Places dataset [23] is abbreviated to
CNN-P (PlacesNet). The CTVs learned with the CNN-I are
abbreviated to CTV-Is (CTV-VB-I and CTV-GS-I), and CTVs
learned with CNN-P are abbreviated to CTV-Ps (CTV-VB-P
and CTV-GS-P).

B. Main Results

1) SUN 397 Dataset: Main results on the large-scale
SUN 397 have been provided in Table II. We compare the
proposed CTVs (CTV-VB and CTV-GS) with the most rele-
vant methods derived from the Fisher Vector framework, and
the other state-of-the-art methods. Among these most relevant
methods in Table II, DMM FV [54] is single scale, while
VLAD [43], Semantic FV [54], CTV-GSs and CTV-VBs are
multi-scale, i.e., three scales.

2) ImageNet Based Results: The first group of comparison
methods adopts FC7 features from CNN-I as descriptors.
These most relevant methods include the baseline CNN and
several Fisher Vector based methods: DMM FV [54], Semantic
FV [54], and VLAD [43]. In Table II, the baseline CNN-I
achieves 42.61% accuracy [23]. The proposed CTV-VB-I
achieves 53.35% and CTV-GS-I achieves 53.21% accuracy
with accuracy gains up to 10.74% and 10.60%, respectively.
Furthermore, compared with other Fisher Vector based meth-
ods, CTV-Is also have a better performance. The CTV-I-VB
and CTV-I-GS achieve 3.49% and 3.35% accuracy gains over
the DMM FV [54], respectively. Although they are Fisher
Vector based, one key difference between DMM FV and CTVs
is that DMM FV fails to take theme/topic correlations into con-
sideration. The GMM based Semantic FV [54], improves the
DMM FV with natural parameterizations of the multinomial
parameter vector. Its performance is still 1.55% and 1.41%
lower than CTV-VB-I and CTV-GS-I, respectively. Even the
concatenation of Semantic FVs at the best four scales achieves
53.0% [54], which is also lower than CTV-Is. Besides, VLAD
is pointed as an approximation of Fisher Vector based on
GMM [54]. Gong et al. [43] report that the CNN-I based
multi-scale VLAD can improve the classification performance
up to 51.98%. CTV-GS-I and CTV-VB-I also outperform it.
In general, among these most relevant methods, DMM FV is
built on DMM which assumes that themes/topics are inde-
pendent of each other; VLAD and Semantic FV, rely on
GMM which implies the i.i.d. assumption for all the patches
of images [37] without topic correlations. These comparison
results with CTV-Is validate the i.i.d. assumption is not always
proper to model topics/semantics and that the introduction of
topic/semantic correlations improves the derived Fisher Vector
based features for the recognition task.
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TABLE III

EVALUATION OF FEATURES EXTRACTED AT DIFFERENT SCALES

Table III reports our results of proposed CTVs at different
scale levels. At each single scale level, the proposed CTV-VB-I
improves the classification accuracy up to 44.30% at the
256×256 scale level, 50.08% at the 128×128 scale level,
and 47.00% at the 64×64 scale level. The performance of
CTV-GS-I on each single scale level keeps pace with that of
CTV-VB-I. The difference between them is only 0.48% at
least and 2.48% at most. As mentioned above, this difference
is reduced to 0.14% in the multi-scale case. But we cannot
leave out one point that Variational Bayesian methods to solve
CTM will take too much time when convergence, especially
for a large-scale dataset, e.g., SUN 397. The GS based
solution [47] facilitates the efficient CTV-GS-I. In general, our
CTV-GS-I is computationally more efficient than CTV-VB-I,
with classification performance being neck and neck with it.

The proposed CTV-VB-I has improvements of 4.73% at
the 256×256 scale level, 4.74% at the 128×128 scale level,
and 6.79% at the 64×64 scale level, in comparison with
VLAD [43]. Similarly, CTV-GS-I outperforms VLAD by
4.04% on average. CTV-VB-I and CTV-GS-I work better than
the Semantic FV at the 128×128 scale. At the 256×256 scale
level, CTV-VB-I is better than Semantic FV and CTV-GS-I
has a comparable performance with it.

3) PlacesNet Based Results: To fully validate the proposed
CTVs, we conduct experiments based on the scene-centric
PlacesNet [23] which is different from the object-centric
ImageNet [25]. The performance of CTV-Ps is 5% higher than
that of CTV-Is, as shown in Table II. Both CTV-VB-P and
CTV-GS-P achieve 58.39% and 58.43%. Compared with the
CNN-P, CTV-VB-P and CTV-GS-P achieve 4.07% and 4.11%
gains, respectively.

In particular, CTV-VB-P and CTV-GS-P have the same ten-
dency that the smaller the scale is, the lower the performance
is, as shown in Table III. This could be rooted in the differ-
ences of learned semantics between PlacesNet and ImageNet.
ImageNet is object-centric so that the learned CNN features
focus on the high-level object-oriented semantics/objects. This
is in accord with the fact that objects often appear at small
scales in scenes. It is rational that the proposed CTV-Is on
small scales are superior to those on large scales. However,
PlacesNet is scene-centric and the learned CNN features tend
to the global scene-oriented semantics. The smaller the scale
is, the less scene-level information it contains. It is reasonable
that the proposed CTV-Ps have higher performance on larger
scales.

With the open-source code released by [43] and simple
replacement from CNN-I to CNN-P, as shown in Table III,
multi-scale CNN-P based VLAD is lower by about 6.7%
than our multi-scale CTV-Ps. Comparing with the case of
CNN-I, our CNN-P based CTVs outperform the VLAD with
a significant margin. Especially, at three individual scale
levels, the performance of CNN-P based VLAD is severely
influenced by the differences of learned semantics between
PlacesNet and ImageNet. It presents a larger decrement from
the 256×256 scale to 64×64 scale.

To further analyze CTVs, we present experimental results
of the CTV-Is on test images. The first row of Fig. 7 shows the
recognition examples of village scene images where the build-
ings, sky, trees and rocks coexist. The proposed CTV leverages
correlated latent topics learned from word co-occurrence to
describe this semantic co-occurrence and to alleviate the word
ambiguity problem. Besides, these images are true positives for
CTV but false negatives for CNN. Take the first image in the
first row for example. It is correctly recognized as village with
the CTV-GS while wrongly recognized as castle with the CNN
feature. Below it, we display three castle images to observe
how much the village image is similar to them. Buildings,
sky, and trees coexist in both the village and the castle scene.
Obviously, capturing semantic correlations is also limited for
feature encoding because inter-class similarity presents great
challenges for scene image features including CNN and latent
semantic representations. The proposed CTV with respect to
the global latent parameter β essentially promotes how visual
words effect each latent topic, which is beneficial to identify
the differences among scene categories. The reason is that
one theme or topic is subject to the particular property of one
scene. Buildings marked in green rectangles in Fig. 7 vary
greatly across different scenes, e.g., castle, abbey, construction
site, slum, and kasbah. In Fig. 8, regions from two village
images in the first and the last second columns of Fig. 7 are
shown. It is clearer that significant differences exist between
the labeled regions of two categories and it motivates the
exploration of the CTV. In addition, four more examples from
other categories are shown in Fig. 9. These four images from
four categories are true positives for the CTV but are falsely
recognized as other categories by the CNN features.

4) MIT Indoor 67 Dataset: Main results on the MIT Indoor
67 have been provided in Table IV. Similar to SUN 397,
we compare the proposed CTVs with the most relevant meth-
ods that include baseline CNN features and other methods
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Fig. 7. Recognition results of the village scene. In the first row, images are true positives for the CTV but false negatives for the CNN features. In the
three rows below them, images from different categories are falsely recognized as villages with the CNN features.

Fig. 8. Region examples.

Fig. 9. Recognition results of four scene categories. For each category, we give one image which is the true positive of the CTV-GS but the false negative
of the CNN features. Three images from the false negative categories of CNN are also shown.

derived from the Fisher Vector, and several other state-of-the-
art methods. For these most relevant methods in Table IV,
DMM FV [54] and Sparse Coding FV [56] are single scale,
while VLAD [43], Semantic FV [54], CTV-GSs and CTV-VBs
are multi-scale, i.e., three scales.

5) ImageNet Based Results: The first group of comparison
methods involves CNN-I FC7 features as descriptors, except
sparse coding FV [56] that utilizes CNN-I features of the sixth
layer. Among these most relevant methods, a CNN baseline
accuracy is 56.79% [23]. CTV-VB-I achieves 68.88% classifi-
cation accuracy and CTV-GS-I obtains 68.36% performance.
We come to the same conclusion on this dataset as SUN 397:
CTV-VB-I and CTV-GS-I have the comparable performance

and both of them significantly outperform the CNN-I baseline.
The former is a bit more accurate while the latter has lower
time complexity. What’s more, the proposed CTV-Is are com-
parable to VLAD, DMM FV, Semantic FV, and Sparse Coding.
Sparse Coding FV [56] extracts Fisher Vector of a sparse
coding based model over local CNN-I features. Different from
Semantic FV and VLAD, Latent GMM FV method [37]
places a Dirichlet prior on mixing weights which are the
parameters of GMM. It achieves 65.0% accuracy when the
way of sampling patches is similar to ours, i.e., dense grid sam-
pling. Due to Dirichlet prior, Latent GMM explicitly claims
that each Gaussian component is independent of each other.
In contrast, the proposed CTV-Is take correlations between
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TABLE IV

COMPARISON ON THE MIT INDOOR 67 DATASET

Fig. 10. Global topic probability map. It is interestingly observed that the topics of high-probability in the scene images usually correspond to correlated
objects, e.g., toilet is correlated with washbasin in the bathroom scene, and cushion and bed in bedroom scene. (Best viewed in color.)

two components or clusters/themes/topics into consideration.
CTV-VB-I outperforms it by 3.88%. Therefore, the indepen-
dent assumption is too strict to characterize semantics for
scene images.

We also evaluate the CTVs at different scale levels
in Table III. At the 256×256 scale level, CTV-VB-I obtains
59.78% accuracy and significantly outperforms VLAD by
6.05%; CTV-VB-I achieves 58.88% which outperforms VLAD
by 5.15%. At this scale level, the CTVs encode features
from the whole image, rather than cropping the image into
patches. The indoor scene images often present complex
object configuration and within-class variation. Using feature
encoding of cropped image patches could reduce the within-
class variation but it is bound to severely destroy this object
configuration when the patch size is too small. The reason
could be that in small patches the descriptors tend to describe
single objects or object parts rather the whole scene. This
explains why CTV-Is extracted at a proper scale level, i.e., the
128×128 scale level, perform best.

6) PlacesNet Based Results: Based on the CNN-P
(PlacesNet), the proposed CTVs achieve up to 73.88%

accuracy as shown in Table III. Similar to the case of SUN
397, CTV-Ps at the individual scale prefer to the larger scale.
CTV-VB-P achieves 70.90% classification accuracy at the
256×256 scale. This result of the 256×256 scale outper-
forms that of 128×128 scale with gains 2.17%, and that
of 64×64 scale with gains 12.17%. This shows the similar
trends in the SUN 397 dataset with the same essential reasons
as discussed above.

C. Evaluation of Models and Parameters

1) Learned Topics and Correlation Between Topics: To fur-
ther demonstrate the learned topics, we utilize a portion of
SUN 397 images, which are fully annotated for object segmen-
tations [30]. We name these images as SUN-anno dataset for
simplicity and evaluate learned topics and topic correlations
on this dataset. In detail, we utilize manually segmented
object regions to build Topic Probability Maps (TPMs), which
present the correspondence between topics and objects, and
explicitly show what the learned topics are. The TPM is
built by assigning each pixel of one image to a topic prob-
ability vector based on the learned global parameter β and
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Fig. 11. Topic probability maps and their correspondence to detection and segmentation annotations. It is interestingly observed that the learned topics
well correspond to the explicit objects and segmented image regions. In the bedroom scene image, high-probability regions of Topic2 well correspond to the
desk lamp and chair. High-probability regions of Topic3 correspond to the table and night table. Topic4 is for window, Topic5 for chair, Topic6 for ceiling,
Topic7 for table, and Topic8 for ceiling, floor, and bed. In the highway scene image, Topic1 is for a truck and an occluded truck, Topic3 for field, Topic5 for
tree, Topic7 for occluded truck, and Topic8 for sky.(Best viewed in color.)

image-specific parameter φ, defined in Sec. III. Pixels in one
patch share the same topic probability vector. As we are
aware that a pixel may be shared for several patches, for a
certain topic, we sum the corresponding probability values for
each pixel across all the patches and obtain a TPM through
normalization.

In Fig.10, we first show a global TPM which sums TPMs of
topics in individual images from indoor categories and outdoor
categories. It can be seen that the pixels of high topic proba-
bilities in the TPMs well correspond to the segmented objects
in the scene images. Moreover, the interesting objects have
been spotted together, e.g., objects of toilet and washbasin
emerge in the bathroom scene, objects of cushion/window and
bed coexist in the bedroom scene, and objects of building and
car coexist in the street scene.

As shown in Fig. 11, the TPMs of some topics exhibit an
interesting correspondence between learned topics and anno-
tated/detected objects. For example, in the bedroom scene, two
high probability regions of Topic2 well correspond to the desk
lamp and chair. Topic3 is for table and night table, Topic4 for
window, Topic5 for chair, Topic6 for ceiling, Topic7 for
table, and Topic8 for floor and bed. Unsurprisingly, these
results demonstrate the capability of latent topic generation
of CTV. Be aware that, even though the topics are shared
among all the images, a topic would exhibit different object
semantics in different images because of inferred image-
specific parameter φ. The learned latent topics can discover the
dominated explicit objects without any supervision of object
segmentation or detection annotation, and present a category-
specific property on the scene images. Thus, it promotes
the proposed CTV features to be more discriminative and
representative.

Fig. 12. Topic correlation matrix for 8 topics learned on the SUN-anno
dataset. Solid circle stands for positive correlation between two topics, while
open circle represents negative correlation between two topics. Larger radius,
larger positive/negative correlations.

To explicitly show the topic correlations, the learned topic
correlations matrix for 8 topics has been shown in Fig. 12,
while the topic correlations with the overall statistical object
results for all the learned topics have been shown in Fig. 13.
As expected, the results can explain the positive/negative
correlations to some extent. For example, object chair in
Topic1 and object table in Topic2 often coexist, especially
in the indoor scene images; this accords with the results
that Topic1 has a positive correlation with Topic2 as shown
in Fig. 12.

The coexistence of objects in many scenes and the subtle
correspondence between objects and learned topics validate
that correlations do exist in scene images. Therefore, the
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Fig. 13. The percentage of objects corresponding to one topic with a
maximum probability. And the top ten object categories are also provided
for each topic in the figure. It is observed that object chair in Topic1 and
object table in Topic2 often coexist, especially in the indoor scene images.
And this accords with the results that Topic1 has a positive correlation with
Topic2 as shown in Fig.12. Best viewed in color and under zoom.)

Fig. 14. Evaluation of topic numbers.

learned topics incorporate category-specific correlations and
their rich semantics can enforce the within-class similarity.
Together with the inter-class discriminative capability enforced
with the Fisher Vector method, CTV demonstrates a great
potential to the scene classification task.

2) Number of Topics: We evaluate the effect of topic
numbers on the MIT Indoor 67 dataset. The results are present
in Fig. 14. With the topic numbers ranging from 8 to 128,
the performance of the multi-scale CTV-GS changes slightly,
showing that the number of topics is not a main factor for
CTV. The reason is that the CTVs are derived from latent
correlated topics/semantics and that the CTVs with the limited
topic number are capable of capturing the subtle differences
of topics and words for each image in the Fisher Kernel space.

3) Solving Algorithms: We conduct experiments with the
proposed features derived from two different CTM solving
algorithms, CTV-VB and CTV-GS. In Table II, III and IV,

it can be observed that, at either multi-scale or a single scale
level, CTV-GSs are always neck and neck with CTV-VBs.
In the case of three individual scales levels, the average
difference between CTV-VB-I and CTV-GS-I is only 0.70% on
the MIT Indoor 67 dataset and 1.38% on the SUN 397 dataset.
At multi-scale levels, it decreases to 0.52% on the MIT Indoor
67 dataset and 0.06% on the SUN 397 dataset, respectively.
The negligible performance difference shows that the Gibbs
Sampling algorithm is a good approximation to the Variational
Bayesian algorithm.

V. CONCLUSION

In the paper, we propose CTV representation for scene
classification targeting to utilize the correlation among topics.
By removing i.i.d assumption for local image patches and
involving the logistic normal prior distribution, this method
can better model the learning for features. Implemented on rich
semantic information of CNN features, we explore underlying
correlated semantics and encode them with the Fisher Vector
framework to increase the discriminative capability. To make
the method suitable for the large-scale datasets, we further
provide a Variational Bayesian solution and a Gibbs sampling
solution. The proposed CTV can be treated as an evolution
oriented from the Fisher Vectors based on GMM or LDA.
Experiments on large-scale datasets validate the effectiveness
of CTV, showing its great improvement over CNN features
and great potential to other Fisher Kernel based deep features.
Together with GMM based Fisher Vector and LDA based
Fisher Vector, our proposed CTV constructs a more complete
generative model for image semantic representations.

APPENDIX

We provide the derivation details of CTV discussed
in Section III-B.

Parameters of CTM are �= {μ,�, β}. The approximated
log-likelihood of image d is LV B :

LV B = Eq [log p(η|μ,�)] +
Nd∑

n=1

Eq [log p(zn|η)]

+
Nd∑

n=1

Eq [log p(wd,n|zn, β)] + H (q)

= 1/2 log |�−1| − K/2 log 2π

−1/2[Tr(diag(ν2
d)�−1)+(λd − μ)T �−1(λd − μ)]

+
N∑

n=1

{
K∑

i=1

λd,iφd,ni − ζ−1(

K∑

i=1

exp(λd,i + ν2
d,i/2))

+1 − logζ } +
N∑

n=1

K∑

i=1

φd,ni log βi,wd,n

+
K∑

i=1

1/2(log 2π + log ν2
d,i + 1)

−
N∑

n=1

K∑

i=1

φd,ni logφd,ni , (10)
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where ζ is a new introduced variational parameter. {λ, ν, φ}
are variational parameters as discussed in Section III and
they are vectors with K elements which are indexed by i ,
i = 1, ..., K , for the image d .

The derived CTV ϕ[�] = I[�]−1/2u[�]. The Fisher score
u[�] = ∂LV B/∂� is the partial derivative of the likelihood
with respect to parameters of CTM. Fisher information matrix
is the second moment of the log-likelihood. Since the expec-
tation of Fisher score is equivalent to zero, I[�] is also the
variance of Fisher score: I[�]=E[u[�]T u[�]]. Under certain
regularity conditions, the Fisher information is the negative
of the expectation of the second derivative with respect to �:
I[�] = −E[∂2LV B/∂�2]. So we first compute Fisher score
u[�]. The terms involving hyper-parameter μ in LV B are:

L[μ]
V B = 1/2(λd − μ)T �−1(λd − μ). (11)

The terms involving hyper-parameter � in LV B are:

L[�]
V B = 1/2(log |�−1| + T r(diag(ν2

d))

+(λd − μ)T �−1(λd − μ)). (12)

The terms involving global parameter β in LV B are:

L[β]
V B =

N∑

n=1

K∑

i=1

φd,ni log βi,wd,n . (13)

Now the Fisher scores of Equations (4)-(6) can be sim-
ply derived from Equations (11)-(13). Following I[�] =
−E[∂2L/∂�2], we then compute the second order derivative
of Equations (11)-(13) for the Fisher information matrix. The
results are Equations (7)-(9).
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