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Abstract—Despite of the substantial progress of visual object
detection, models trained in one video domain often fail to gen-
eralize well to others due to the change of camera configurations,
lighting conditions, and object person views. In this paper, we
present Domain Contrast (DC), a simple yet effective approach
inspired by contrastive learning for training domain adaptive
detectors. DC is deduced from the error bound minimization
perspective of a transferred model, and is implemented with
cross-domain contrast loss which is plug-and-play. By minimiz-
ing cross-domain contrast loss, DC transfers detectors across
domains while naturally alleviating the class imbalance issue in
the target domain. DC can be applied at either image level or
region level, consistently improving detectors’ discriminability
while maintaining the transferability. Extensive experiments on
commonly used benchmarks show that DC improves the baseline
and state-of-the-art by significant margins, while demonstrating
great potential for large domain divergence. Code is released at
github.com/PhoneSix/Domain-Contrast.

Index Terms—Domain Adaptation, Visual Object Detection,
Contrastive Learning, Transfer Learning.

I. INTRODUCTION

MODERN object detectors [1], [2] have achieved un-
precedented progress with the rise of convolutional

neural networks (CNNs). However, their practical application
to real-world video scenarios remains limited for the following
two reasons: 1) Supervised learning of detectors for different
scenarios requires repeated human effort on data annotation,
and 2) offline-trained detectors typically degrade with changes
in the scene or camera. Domain adaptive detection, which
transfers detectors trained within a label-rich domain (i.e.,
annotated datasets) to an unlabeled domain (i.e., real-world
video scenarios), have attracted increasing attention because
of their potential to solve these problems [3], [4], [5], [6].

Domain adaptive detection is usually explored with un-
supervised domain adaptation (UDA) methods. One line of
UDA methods utilizes adversarial generative models as a style
transformer to convert images (with identity annotations) of a
source domain into a target domain [7], [8]. The other line of
methods attempts to match the feature distributions of source
and target domains to maintain model performance [9], [10].
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This line of methods typically maximizes the “transferability”
of models by aligning the feature distributions of domains [3].
The underlying hypothesis is that accurate feature alignment
across domains produces good transferability.

Recent studies [11] have shown that transferability and
discriminability are in fact two sides of a same coin. The
transferring process, e.g., minimizing Maximum Mean Dis-
crepancy (MMD) [12], could deteriorate the discriminability
of models and features [13]. This would be more severe in the
object detection problem, considering the large imbalance of
negative and positive instances which need to be classified.
Because of the large amount of negative instances from
the backgrounds, slight degradation of model discriminability
could cause a significant increase of false positives in the target
domain. There is a requirement to exploit domain adaptive
methods which can comprise both the transferability and
discriminability of features and detectors.

In this paper, we propose a novel Domain Contrast (DC)
approach for domain adaptive object detection, with the aim to
maximize model discrimination capacity in the target domain
by alternating discriminative learning and domain transfer. We
derive the DC method from the perspective of error bound
minimization when transferring detectors from a source to
a target domain. Minimizing error bound is converted to
optimize DC loss, which defines the cross-domain similarity
and inter-class distance for each min-batch of samples. DC
guarantees the discriminability of transferred detectors by
minimizing the similarity between samples from different cat-
egories in a mini-batch, Fig. 1. DC preserves the transferability
of detectors by maximizing the cosine similarity between each
sample with its cross-domain counterparts.

To define DC, training sample images are translated from
the source/target to the target/source domain via a CycleGAN
method [14]. Other commonly used stye-transfer methods can
be also combined with the proposed DC method in a plug-
and-play fashion. With translated images, a detector is trained
using annotated samples in the source domain by minimizing
the object detection loss. The detector is then fine-tuned
by optimizing the DC loss which targets at minimizing the
domain divergence and maximizing the transferability between
the source and the target domain. In turn, the detector is trained
using the DC loss from the target to the source domain. With
the simple yet effective DC learning, the features are adapted
to both the target and source domain data, and have stronger
representative capacity. DC loss is applied at both image-level
and region-level, consistently improving the transferability
and discriminability of detectors across domains for higher
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Fig. 1: Samples distribution before (upper) and after (lower)
domain adaptation with Domain Contrast (DC). DC simul-
taneously improves model discriminability, i.e., maximizing
the distances between samples from different categories, and
aligns samples of same categories from different domain. Data
points are features from PASCAL VOC 07 dataset and figure
is drawn with t-SNE. (Best viewed in color)

detection performance.
The contributions of this work are summarized as follows:
• A simple-yet-effective domain contrast (DC) approach,

which improves model discriminability in the target do-
main while preserving feature alignment (i.e., transfer-
ability) between the source domain and the target domain.
The plausibility of DC loss for domain adaptation is
justified from a perspective of error bound minimization.

• A domain adaptive detector considering the class imbal-
ance issue. The detector leverages DC loss at image level
and region level to handle the detector transfer problem.

• State-of-the-art detection performance on benchmarks
with large domain divergence upon negligible computa-
tional cost and complexity of the proposed DC approach.

II. RELATED WORK

While object detection has been extensively investigated
from various perspectives, we mainly review the domain

adaptive object detection approaches, which are largely driven
by unsupervised domain adaptation (UDA) methods. We also
reviewed recent advance about constrative learning, which is
commonly used to enforce feature learning in a self-supervised
manner or minimize the divergence between two domains.

A. Unsupervised Domain Adaptation (UDA)

UDA aims to minimize the classification error when trans-
ferring the model trained within a source domain to an
unlabelled target domain. UDA has been extensively explored
in a number of computer vision specializations, including
image classification [15], [16], [17], [18], [19], image recog-
nition [20], [21], and object detection [3], [4], [5], [22].

One line of UDA methods devoted to align feature dis-
tributions of source and target domains by minimizing the
domain divergence [19], [18]. For example, Maximum Mean
Discrepancy (MMD) [12] was proposed as a distance metric
to minimize the domain divergence in the Reproducing Kernel
Hilbert Space (RKHS) [19], [23].

Progressive domain distance minimization [24] was
achieved by mining pseudo labels to fine-tune the model. The
descrepancy-based method [25] aligned distributions of source
and target domains by learning features to minimize classi-
fiers’ output discrepancy. TA3N [26] simultaneously learned
and matched temporal dynamics with domain discrepancy
for domain alignment. The other line of methods [27], [28]
attempted to reduce the domain divergence by taking ad-
vantages of adversarial and generative models which con-
fuse domains while aligning feature distributions. The Cy-
CADA method [28] transferred samples across domains at
both pixel- and feature-levels. Domain confusion loss [18]
was designed to learn domain-invariant features. SAVA [29]
minimized domain adversarial loss on discriminative clips
for cross-domain video representation alignment. TCoN [30]
leveraged an adversarial co-attention mechanism to match the
distributions of temporal features between source and target
domains. In addition to adversarial alignment, MM-SADA
[31] leveraged the correspondence of modalities as a self-
supervised alignment approach to reduce domain shift.

B. Contrastive Learning

Contrastive loss [32] aimed to learn a good representa-
tion by minimizing the distances between positive pairs and
maximizing the distances between negative pairs. Instance
Discrimination [33] abandoned the euclidean distance, using a
non-parametric softmax classifier. To reduce the computation
cost, it adopted noise-contrastive estimation [34] strategy. CPC
[35] proposed a probabilistic contrastive loss, InfoNCE loss,
to maximize a lower bound on mutual information. Deep
InfoMax [36] aggregated local and global mutual information
and prior matching together to learn a representation that can
perform well on various tasks. CPC [35] and Deep InfoMax
[36] were further extended in [37] and [38], respectively. These
mutual information-based methods learned from two views.
Instance Discrimination [33] learned from two crops of a same
image and CPC [35] learned from past and future. Deep Info-
Max [36] learned from input and output of the neural network.
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CMC [39] designed a loss to enable the network to maximize
mutual information among multiple views of the same scene.
Moco [40] viewed contrastive learning as dictionary look-up
and built a dynamic dictionary with a queue and a moving-
averaged encoder. SimCLR [41] conducted data augmentations
on images to obtain positive and negative sample pairs. It then
applied contrastive loss on them to learn invariant features
in a self-supervised way. To address the misaligned issue in
the domain adaptive classification task, CAN [42] introduced
contrastive loss to perform class-aware alignment, optimizing
intra-class and inter-class domain discrepancy.

The main differences between our method and above meth-
ods can be conlcuded as two points. First, we derive the con-
trastive loss from the perspective of error bound minimization,
providing a new perspective for understanding contrastive loss.
Second, we specifity the image- and instance-level constristive
loss for the object detection task, which requires to handle a
large amount of instances in each image.

C. Domain Adaptive Detection

Early studies largely followed domain adaptive classification
to align the features of source and target domains. DA-
Faster R-CNN [3] pioneered these works by minimizing the
discrepancy among two domains by exploring both image-
and instance-level domain classifier in an adversarial manner.
Mean Teacher with object relations [43] was applied for object
distribution alignment, while integrating object relations with
the measure of consistency cost between teacher and student
modules. The Diversify and Match (DM) approach [22] gen-
erated various distinctive shifted domains from the source
domain and aligned the distribution of the labeled data and
encouraged features to be indistinguishable among the do-
mains. Strong-and-Weak [4] method pursue weak alignment
of image-level features and strong alignment of region-level
features.

Despite progress, the essential difference between domain
adaptive detection with domain adaptive classification is un-
fortunately ignored. On the one hand, source and target
domains have distinct scene layouts and object combinations.
Therefore, aligning the entire distributions of source and target
images is implausible. On the other hand, object detectors face
the serious class imbalance issue. Preserving model discrim-
inability during domain adaptive detection is more important
than that in image classification [5].

To preserve the discriminability, the Selective Cross-
Domain approach [5] attempted aligning discriminative re-
gions, namely those that are directly related to detection.
The Hierarchical Transferability Calibration Network harmo-
nized transferability and discriminability for cross-domain
detection [11]. Nevertheless, these approaches used complex
adversarial training and/or sample interpolation which hinders
deployment and therefore practicability.

III. THE PROPOSED APPROACH

Under the context of unsupervised domain adaptation
(UDA) for object detection, we have a fully labeled source
domain and a unlabeled domain. Let S and T respectively

denote a source and a target domain. The corresponding
samples of S and T are denoted as {xis}Ni=1 and {xit}Ni=1.
fS : X → {0, 1} and fT : X → {0, 1} denote functions
which map the input samples X to a binary label space.
fT (x

i
s) = fT (x

i
t) and fS(x

i
s) = fS(x

i
t) mean that the

sample labels are consistent regardless of the domains. Domain
adaptation targets at transferring a model (i.e., the detector)
optimized for fS to T towards optimizing fT .

In what follows, we first derive the domain contrast method
and domain contrast loss from a perspective of error bound
minimization. We then describe the object detector based on
domain contrast loss.

A. Domain Contrast

Error Bound Minimization. The source and target do-
mains share an identical label space, but violate the i.i.d. as-
sumption as they are sampled from different data distributions.
Given a model hypothesis h ∈ H, the expected error [44]
within the target domain are bounded as

RT (h, fT ) ≤ RT (h, fS) + |RT (h, fT )−RT (h, fS)|, (1)

where RT (h, fT ) and RT (h, fS) respectively denote the
empirical error of hypothesis h in the target and source
domains. To minimize the error bound defined by Eq. 1 is
to minimize |RT (h, fT )−RT (h, fS)| and RT (h, fS), which
aligns the two domains while preserving the discriminability
of the trained model in the target domain.

In the context of CNN, with the binary cross entropy loss,
we have

RT (h, fS) =
1

N

∑
i

(
− fS(xit) log(h(xit))

− (1− fS(xit)) log(1− h(xit))
)
,

(2)

and

RT (h, fT ) =
1

N

∑
i

(
− fT (xit) log(h(xit))

− (1− fT (xit)) log(1− h(xit))
)
,

(3)

where N denotes the number of samples. Subtracting Eq. 3
from Eq. 2, we have

|RT (h, fT )−RT (h, fS)|

=

∣∣∣∣ 1N ∑
i

(
− f ′(xit) log(

h(xit)

1− h(xit)
)

)∣∣∣∣, (4)

where f ′(x) = fT (x)− fS(x).
For the optimal hypothesis h∗ in the source domain, it is

assumed that the empirical error in the source domain is small
enough, i.e., RS(h∗, fS)→ 0, and the discriminability of h∗

for each sample in T is smaller than that in S, as

| log( h∗(xit)

1− h∗(xit)
)| ≤ | log( h∗(xis)

1− h∗(xis)
)|. (5)
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Fig. 2: Illustration of the domain adaptive objector based upon CycleGAN and the proposed DC loss. CycleGAN is adopted
to translate an image from the S/T to the T /S domain. G1 and G2 refer to convolutional layers. The detection network is
first trained within S by minimizing the training loss LD(θ). The network then is transferred across domains by progressively
minimizing the DC loss including LI

C,S(θ), LR
C,S(θ), and LI

C,T (θ) and the pseudo ground-truth loss LR
T (θ).

We therefore have the following inequality1

−f ′(xit) log(
h∗(xit)

1− h∗(xit)
) ≤ −f ′(xis) log(

h∗(xis)

1− h∗(xis)
). (6)

Substituting Eq. 4 to Eq. 6, we have

|RT (h∗, fT )−RT (h∗, fS)| ≤ |RS(h∗, fT )−RS(h∗, fS)|.
(7)

According to Eq. 1, the error bound of hypothesis h∗ in the
target domain is concluded as

RT (h∗, fT ) ≤ RT (h∗, fS) + |RS(h∗, fT )−RS(h∗, fS)|
≤ RT (h∗, fS) +RS(h∗, fT ).

(8)

Domain Contrast (DC) Loss. To quantify RS(h∗, fT ), h∗
is supposed to be a nearest neighbor classifier. The probability
that a source domain sample xis has the same class label
with it’s neighbors in the target domains is calculated as
their similarity S(xis, x

i
t), where S(u, v) = u>v/||u||||v||

defines the cosine similarity between two samples. Combining
the probabilities to a softmax function, the nearest neighbor
classifier h∗ is defined as

h∗(xit) =

∑
j fS(x

j
s) exp(S(x

i
t, x

j
s))∑

j exp(S(x
i
t, x

j
s))

, (9)

where xit is the ith sample transferred from the source to
the target domain. Accordingly, minimization of the empirical
error of a source model in the target domain, RT (h∗, fS), can
be implemented by minimizing

RT (h∗, fS) =
1

N

∑
i

− log

(∑
j I(x

i
t, x

j
s) exp(S(x

i
t, x

j
s))∑

j exp(S(x
i
t, x

j
s))

)
≤ 1

N

∑
i

− log

(
exp(S(xit, x

i
s))∑

j exp(S(x
i
t, x

j
s))

)
,

(10)

1Proof of Eq. 6 is included in Appendix A.

where I(x1, x2) = 1−|fS(x1)−fS(x2)|. N denotes the num-
ber of samples2. Correspondingly, we approximately quantify
the RS(h∗, fT ) as

RS(h∗, fT ) ≤
1

N

∑
i

− log

(
exp(S(xis, x

i
t))∑

j exp(S(x
i
s, x

j
t ))

)
. (11)

According to Eqs. 8, 10 and 11, minimizing the error
bound defined by Eq. 1 can be fulfilled by optimizing network
parameter to minimize

LC(S, T ) =−
1

N

∑
i

log

(
exp(S(xit, x

i
s))∑

j exp(S(x
i
t, x

j
s))

)
− 1

N

∑
i

log

(
exp(S(xis, x

i
t))∑

j exp(S(x
i
s, x

j
t ))

)
,

(12)

which is referred to as the DC loss.

B. Domain Adaptive Detection

To implement domain adaptive detection, a base detector
based on the deep network is first trained using the annotated
data {xns , yns }N

s

n=1 in the source domain by minimizing the
detection loss LD(θ) where θ denotes network parameters.
The trained base detector is then transferred to the target
domain by minimizing the image- and region-level DC loss
LI
C,S(θ) and LR

C,S(θ). In turn, the detector is transferred to
the source domain by minimizing the image-level DC loss
LI
C,T (θ) and fine-tuning the detector using LR

T (θ), which is
the pseudo ground-truth loss.

Base Detector. The Faster R-CNN [1] is employed as
the base detector, which consists of three stages: convolu-
tional feature extraction, region proposal generation (RPN) and
bounding box regression, as shown in Fig. 2. Each input image
is represented as image-level features and RPN generates
object region proposals, of which region-level features are
extracted by ROI-pooling. With region-level features, the cate-
gory labels and bounding boxes are predicted by classification
and regression subnets. Detection loss LD(θ) is composed of
the loss of the RPN and the loss of the subnets.

2Proof of Eq. 10 is included in the Appendix B.
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Detector Transfer. To transfer the Faster RCNN detector
parameterized by θ, we first translate each sample image xis
from S to T using the CycleGAN method [14]. CycleGAN
learns to translate an image from a source domain S to a
target domain T with unpaired examples. Its goal is to learn a
mapping G : S → T such that the distribution of images from
G(S) is indistinguishable from the distribution T with respect
to an adversarial loss. During training, an inverse mapping F :
T → S is also learned. Besides, CycleGAN introduces a cycle
consistency loss to enforce F (G(S)) ≈ S and G(F (T )) ≈ T .
After completing the training of the two mapping functions,
we convert source domain images to target domain style and
convert the target domain images in source domain style.

Denote the features of a translated sample as xis→t(θ). For
a batch of samples in S and their translated counterparts in
T , we construct a positive sample pair (xis(θ), x

i
s→t(θ)) and

N − 1 negative sample pairs (xjs(θ), x
i
s→t(θ)). Given positive

and negative sample pairs, S → T transfer is implemented by
fine-tuning the network parameter to minimize DC loss. By
introducing a temperature parameter τ to Eq. 12, the image-
level S → T DC loss is defined as

LI
C,S(θ) =−

1

N

∑
i

log

(
exp(S(xis→t(θ), x

i
s(θ))/τ)∑

j exp(S(x
i
s→t(θ), x

j
s(θ))/τ)

)
− 1

N

∑
i

log

(
exp(S(xis(θ), x

i
s→t(θ))/τ)∑

j exp(S(x
i
s(θ), x

j
s→t(θ))/τ)

)
,

(13)

where xi(θ) denotes the features in the last convolutional layer
for a sample image.

In each image, we use ground-truth bounding boxes to
crop feature maps to guarantee that features are from the
same region. The region-level features are denoted as ri(θ).
The region-level contrast loss LR

C,S(θ) can be calculated by
replacing the image-level features xi(θ) with the region-level
features ri(θ).

In a similar way the image-level T → S DC loss is defined
as

LI
C,T (θ) =−

1

N

∑
i

log

(
exp(S(xit(θ), x

i
t→s(θ)/τ)∑

j exp(S(x
i
t(θ), x

j
t→s(θ)/τ)

)
− 1

N

∑
i

log

(
exp(S(xit→s(θ), x

i
t(θ)/τ)∑

j exp(S(x
i
t→s(θ), x

j
t (θ)/τ)

)
,

(14)

As there is no ground-truth object annotated in the target
domain, the region-level transfer can not be directly applied.
We thereby first translate all the training image from T to S
using the CycleGAN method. We then use the detector trained
in S to detect high-scored regions in the translated images
as pseudo ground-truth objects. With the pseudo ground-truth
objects, region-level T → S transfer is carried out by fine-
turning the detector to minimize the detection loss LR

T (θ) for
pseudo ground-truth objects.

Discussion. The DC loss for detector transfer is derived
from the perspective of error bound minimization, while
reflecting the similarity and dis-similarity (contrast) between
samples across the domains. By combining the CycleGan
with DC loss, we implement detectors’ transferability while

(a) (b) (c)

i

sx

i

tx

i

sx

i

tx

j

sx

 
j

tx

 

Fig. 3: DC Effect. (a) The reduction of domain divergence
(distance between xis and xit) towards aligning feature distri-
butions of the source domain S and the target domain T . (b)
The alignment of S and T could reduce the discriminability
of models, i.e., samples from different categories are mixed
together. (c) Domain Contrast improve the discriminability of
models while preserving the alignment of domains.

maintaining their discriminability. Since most negative pairs in
a batch have different class labels with the positive pair, min-
imizing DC loss drives learning feature representations which
capture information shared by source and target domains but
that are discriminative, i.e., different samples/instances in
the two domains have small similarities, i.e., large cosine
distances, Fig. 3.

It is known that the positive-negative class imbalance is
an important issue for object detection. Such an issue has
been widely explored in supervised detection, but unfortu-
nately ignored by the domain adaptive detection, which could
deteriorate the discriminability of transferred detectors. The
nominator and denominator of the DC loss naturally incor-
porate sampling imbalance, which, during transfer, facilities
alleviating class imbalance in the target domain. This is an
advantage of DC loss compared to the Triplet Loss [45].

IV. EXPERIMENT

We analyzed the proposed domain adaptation method by
training a detector in the PASCAL VOC dataset [51] and
transferring it to the Clipart1K dataset [50] for detection
performance evaluation. We also transferred detectors across
domains, Pascal VOC → Comic2K, PASCAL → Water-
Color2K [50], and SIM 10K[52]→ Cityscape[53], where large
domain divergence exists.

A. Experimental Setting

Detector and Images. Faster R-CNN with the VGG16[54]
or ResNet101 [55] backbone pre-trained on the ImageNet [56]
was employed as the base detector. We set the shorter side
of the image to 600 pixels following the setting of Faster
RCNN [1]. While training the domain adaptive detector, the
inputs were a mini-batch of image/frame pairs, including N
(batch size) annotated images/frames from the source/target
domain and N transferred images. To obtain transferred im-
ages, we train CycleGAN [14] with a learning rate of 0.0002
for the first 10 epochs and a linear decaying rate to zero
over the next 10 epochs. We followed [14] for other hyper-
parameter settings when training the CycleGAN.
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TABLE I: Ablation study of detection performance (mAP%) and comparison with the state-of-the-arts when transferring a
detector trained within PASCAL VOC to Clipart1K.

Method aero bike bird boat bott. bus car cat chair cow table dog hrs mbi. pers. plant she. sofa train tv mAP

WST-BSR[46] 35.6 52.5 24.3 23.0 20.0 43.9 32.8 10.7 30.6 11.7 13.8 6.0 36.8 45.9 48.7 41.9 16.5 7.3 22.9 32.0 27.8
SWDA[47] 26.2 48.5 32.6 33.7 38.5 54.3 37.1 18.6 34.8 58.3 17.0 12.5 33.8 65.5 61.6 52.0 9.3 24.9 54.1 49.1 38.1
ICR-CCR [48] 28.7 55.3 31.8 26.0 40.1 63.6 36.6 9.4 38.7 49.3 17.6 14.1 33.3 74.3 61.3 46.3 22.3 24.3 49.1 44.3 38.3
HTCN[11] 33.6 58.9 34.0 23.4 45.6 57.0 39.8 12.0 39.7 51.3 21.1 20.1 39.1 72.8 63.0 43.1 19.3 30.1 50.2 51.8 40.3
DM[22] 25.8 63.2 24.5 42.4 47.9 43.1 37.5 9.1 47.0 46.7 26.8 24.9 48.1 78.7 63.0 45.0 21.3 36.1 52.3 53.4 41.8
ATF[49] 41.9 67.0 27.4 36.4 41.0 48.5 42.0 13.1 39.2 75.1 33.4 7.9 41.2 56.2 61.4 50.6 42.0 25.0 53.1 39.1 42.1

Baseline[1] 35.6 52.5 24.3 23.0 20.0 43.9 32.8 10.7 30.6 11.7 13.8 6.0 36.8 45.9 48.7 41.9 16.5 7.3 22.9 32.0 27.8
DCI

S→T 44.0 49.4 34.9 34.0 40.1 52.4 42.2 11.5 38.4 37.1 30.4 15.6 34.0 84.6 58.5 50.2 14.4 24.5 35.6 42.3 38.7
DCR

S→T 29.4 53.2 27.4 26.4 45.2 51.5 41.0 5.2 35.8 36.5 22.3 9.8 31.7 79.1 51.6 42.3 12.5 25.3 43.6 41.2 35.5
DCI,R

S→T 40.3 58.7 33.0 31.9 49.3 51.9 47.2 6.5 36.8 38.3 32.1 16.7 32.2 85.3 57.9 48.0 15.0 25.9 46.3 44.2 39.9
DCI

T →S 36.0 53.1 29.9 24.6 40.1 51.0 33.9 7.5 39.2 23.8 23.2 11.5 31.4 59.7 41.9 49.2 10.9 30.4 47.9 41.1 34.3
DCI,R

S→T -DCI
T →S 45.2 55.9 33.8 32.8 49.2 52.2 48.2 9.4 37.6 38.7 31.8 16.6 34.9 87.3 60.3 50.2 15.8 27.4 45.5 47.9 41.0

DCI,R
S→T - DCI,R

T →S 47.1 53.2 38.8 37.0 46.6 45.8 52.6 14.5 39.1 48.4 31.7 23.7 34.9 87.0 67.8 54.0 22.8 23.8 44.9 51.0 43.2
Oracle 30.1 51.4 47.2 42.5 30.7 55.7 59.4 25.1 47.4 52.5 37.8 43.3 42.6 61.6 73.3 41.9 44.3 25.5 59.0 51.3 46.1

TABLE II: Performance comparison when transferring detectors from Pascal VOC to Comic2k.
Method Base Detector bike bird car cat dog per. mAP

DT[50] SSD+VGG16 43.6 13.6 30.2 16.0 26.9 48.3 29.8
WST-BSR[46] SSD+VGG16 50.6 13.6 31.0 7.5 16.4 41.4 26.9
DM[22] Faster RCNN+VGG16 - - - - - - 34.5

Baseline[1] Faster RCNN+VGG16 38.5 10.5 14.7 15.1 15.2 29.8 20.6
Faster RCNN+ResNet101 30.7 13.8 24.2 13.8 14.8 32.7 21.7

DC (ours) Faster RCNN+VGG16 52.7 17.4 43.4 23.3 25.9 58.7 36.9
Faster RCNN+ResNet101 51.9 23.9 36.7 27.1 31.5 61.0 38.7

Oracle Faster RCNN+VGG16 40.1 23.1 32.8 36.7 36.6 68.4 39.6
Faster RCNN+ResNet101 38.3 30.8 34.9 51.8 47.5 72.8 46.0

Training Details. The detection network (base detector)
was trained with a learning rate of 0.001 in the first 5 epochs
and decreased to 0.0001 in the following 2 epochs. The
iteration number of each epoch is calculated by the sample
number divided by the batch size. The mean Average Precision
(mAP) for all object categories was used as the evaluation
metric. The DC loss is plug-and-play, which means it operates
simply by fine-tuning the base detector trained in the source
domain. For DC loss, when training with source images and
transferred source images, the detector is fine-tuned for 3
epochs with a learning rate of 0.00001. When training using
target images and transferred images, the detector is fine-tuned
for 3 epochs with a learning rate of 0.00005. The batch size
of these two steps is 8. For target images with pseudo labels,
the detector is fine-tuned for 3 epochs with a learning rate of
0.00001. In this way, there is no regularization factor required
to balance the importance of each loss terms defined in Sec.
3.2, which simplifies the parameter settings.

Baseline and Compared Methods. Faster R-CNN [1]
trained only with source domain data in a supervised way
is set as our baseline method. All the compared methods,
e.g., WST-BSR [46], SWDA [4], ICR-CCR[48], HTCN[11],
DM[22], ATF [49], CST [57], leverage adversarial learning to
align feature representation of the source domain and the target
domain. Besides, WST-BSR [46] and DT [50] generate pseudo
labels for target domain images to boost performance. Our

model handles the domain discrepancy by using the proposed
Domain Contrast Loss. It also leverages pseudo labels in the
target domain.

B. Model Effect

Visualization. In Fig. 1, we compared the distributions of
target samples before and after domain adaptation. Before
adaptation, the target domain samples tends to be concentrated
together and are difficult to discriminate. After domain adap-
tation using DC, the distribution of the target domain samples
were well aligned with that of the source domain samples. At
the same time, target samples can be well discriminated, which
demonstrated the effect of the proposed DC method, demon-
strating that it improves detectors’ discriminability while main-
taining the transferability. The detection examples in Fig.4 also
demonstrate the effectiveness of our DC Loss.

Ablation Study. In Table I, the effect of domain contrast
was validated by performing S → T and T → S transfer
step-by-step. Using solely the image-level S → T trans-
fer (DCI

S→T ) the mAP is improved by 10.9% (38.7% vs.
27.8%) which validated the effectiveness of our approach at
reducing cross-domain divergence while improving detector
discriminability. The region-level S → T transfer (DCR

S→T )
improved the mAP by 7.7%. Combining the image-level and
region-level S → T transfer (DCI,R

S→T ) improved the mAP by
12.1% (39.9% vs. 27.8%).
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Fig. 4: Detection examples from the Clipart1K and Cityscape datasets. The first three rows are for Clipart1k and the left are
for Cityscape. The results of the baseline method are in the first row and our detection results are in the second row. The
Ground Truth are in the third row. (Best viewed in color)

After performing image-level T → S transfer (DCI,R
S→T -

DCI
T→S ), the mAP is further improved by 1.1% (41.0%

vs. 39.9%). Using the pseudo objects in the target domain
to fine tune the detector with DC loss was also effective,
improving the mAP by 2.2% (43.2% vs. 41.0%). To reduce
false positives, the threshold for pseudo object detection
was set to be 0.95. Without bells and whistles, our method
outperformed the state-of-the-art by 1.1% (43.2% vs. 42.1%),
which was a significant margin considering the large domain
divergence. We reported the “Oracle” result by training a
Faster RCNN detector using the images within target domain
but with the ground truth annotations, which is a reference for
the performance upper-bound.

Parameter Setting. In Fig. 5, parameters τ and batch size
were analyzed for DC loss. With τ = 0.5 the best performance
was achieved. The optimization of τ improved the mAP by
1.75%, showing the importance of the temperature parameter.
In Fig. 6, the performance was not very sensitive to the batch
size, e.g., using a large batch size 8 slightly improved the
mAP. This is different from unsupervised contrastive learning
which often relies on large batch sizes [39], [58].

Style Transfer Methods. For a fair comparison, we follow
DT [50] and use CycleGAN as the default style transfer

t mAP
0.05 38.24
0.1 39.15
0.5 39.88
1 39.19
2 39.3
5 39.12
10 39




Fig. 5: Ablation of parameter τ at proper learning rates.

method. To further explore the style transfer methods, we
test two more style methods. One is AdaIN [63], which uses
instance normalization to conduct style transfer, without using
adversarial training.The other is StyleNAS [62], which is built
upon neural architecture search. As shown in Table VI, both
AdaIn and StyleNAS obtain higher detection performance than
CyclGAN. This show that our DC method is compatible with
different style transfer methods and preserve the advantages
of them.

Comparison with Triplet Loss and MMD. In Fig. 7,
we demonstrate the advantage of DC loss over the Triplet
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TABLE III: Performance comparison when transferring detectors from Pascal VOC to WaterColor2K.
Method Base Detector bike bird car cat dog per. mAP

DT[50] SSD+VGG16 82.8 47.0 40.2 34.6 35.3 62.5 50.4
WST-BSR[46] SSD+VGG16 75.6 45.8 49.3 34.1 30.1 64.1 49.9
DM[22] Faster RCNN+VGG16 - - - - - - 52.0
SWDA[47] Faster RCNN+ResNet101 82.3 55.9 46.5 32.7 35.5 66.7 53.3
ATF[49] Faster RCNN+ResNet101 78.8 59.9 47.9 41.0 34.8 66.9 54.9
Baseline[1] Faster RCNN+ResNet101 77.4 46.5 39.7 32.4 24.3 57.5 46.3
DC (ours) Faster RCNN+ResNet101 76.7 53.2 45.3 41.6 35.5 70.0 53.7

Oracle Faster RCNN+ResNet101 70.9 52.9 44.4 41.7 51.4 74.5 56.0

TABLE IV: Performance comparison when transferring detectors from SIM 10K to Cityscape.
Method Base Detector AP on car

DA Faster[3] Faster RCNN+VGG16 39.0
SWDA[47] Faster RCNN+VGG16 40.1
MAF[59] Faster RCNN+VGG16 41.1
HTCN[11] Faster RCNN+VGG16 42.5
SCDA[60] Faster RCNN+VGG16 43.0
CST[57] Faster RCNN+VGG16 44.5
Baseline[1] Faster RCNN+VGG16 34.2
DC (ours) Faster RCNN+VGG16 41.6

Oracle Faster RCNN+VGG16 53.2

TABLE V: Accuracy(%) on Office-Home for unsupervised domain adaptive image classification.
Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg.

CDAN[61]-reported 49 69.3 74.5 54.4 66 68.4 55.6 48.3 75.9 68.4 55.4 80.5 63.8
CDAN[61]-reproduced 50.7 68.7 74.9 53.8 69.9 68.9 56 49.6 75.3 71.5 55.3 80.7 64.6

CDAN[61]+DCI
S→T 53 71.1 75.4 58 69.9 69.3 57.8 51.8 76.7 72.2 57.7 82.3 66.3

t mAP
0.05 38.24
0.1 39.15
0.5 39.88
1 39.19
2 39.3
5 39.12
10 39




Fig. 6: Ablation of batch size.

Fig. 7: Comparison of APs and mAP of Triplet Loss, MMD,
and DC loss when performing image-level transfer from Pascal
VOC to Clipart1K.

TABLE VI: Ablation for style transfer method on image-level
S → T transfer in PASCAL VOC to Clipart1K task.

Style Transfer Method mAP(%)

Baseline[1] 27.8

CycleGAN[14] 38.7
StyleNAS[62] 39.1
AdaIN[63] 40.1

loss [45], which is designed to minimize the intra-class
distance of each positive sample pair and maximizes the
inter-class distances of each positive-negative sample pair as∑

j max(||xis−xis→t||22−||xis−x
j
s→t||22+0.5, 0). It can be seen

that Triplet Loss reported lower mAP as it pursued maximizing
the domain similarity and minimizing the similarity of a single
pair of sample in a mini-batch but unfortunately ignored the
class imbalance issue in object detection. This caused more
false detection results from the background areas. Such an
imbalance issue was also ignored by the MMD method [13].

C. Performance and Comparison

In Table II, we evaluated the proposed method and com-
pared it with state-of-the-art methods when transferring detec-
tors from Pascal VOC to Comic2k [50]. The Comic2k dataset
includes 2,000 comic images, 1,000 for training and the other
1,000 for test. It has 6 object classes which also exist in Pascal
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VOC. As the images in Comic2k are unrealistic images, the
domain divergence between the source (VOC) and the target
domain (Comic2k) was predictably large. In this scenario, the
proposed DC method outperformed the state-of-the-art method
WST-BSR [46] by 10.0% (36.9% vs. 26.9%) and DM [22]
by 2.4% (36.9% vs. 34.5%). Using the ResNet-101 backbone
further boosted the performance to 38.7%.

In Table III and Table IV, our method is comparable with, if
not outperforms, the state-of-the-art domain adaptive detectors.
Compared with the objects in other datasets, the objects in SIM
10k and CityScape typically occupy small areas compared
to the whole image. The background interference is thereby
more significant when performing detector training. To transfer
the detectors in such scenarios it requires more sophisticated
region-level domain adaptation methods, which is the future
research direction of DC.

D. Generalization Performance on UDA Classification.

To further verify the effectiveness of the DC Loss, we
apply it for domain adaptive image classification. We con-
duct experiments with the classical benchmark CDAN [61]
on the challenging Office-Home [64] Dataset. As shown in
Table V, with image-level DC Loss, we steadily improve the
performance on multiple sub tasks, yielding 2.5% gain on the
reported results and 1.7% gain compared to the reproduced
results.

V. CONCLUSION AND FUTURE RESEARCH

We have presented Domain Contrast (DC), a simple yet
effective approach to train domain adaptive detectors. This DC
method is theoretically plausible because it was deduced from
the perspective of error bound minimization about transfer
learning. It is also conceptually simple and can simultaneously
guarantee the transferability of detectors while preserving the
discriminability of transferred detectors by minimizing DC
loss. DC significantly boosted the performance of domain
adaptive detectors and improved the state-of-the-art on image
and video datasets of large domain divergence. DC not only
provides a fresh insight to the transfer learning problem
but also a practical technique to handle the large domain
divergence issue in object detection and recognition scenarios.
As a future research direction, DC Loss can be leveraged
to explore the temporal relevance across video frames to
boost performance by constructing more positive pairs across
adjacent frames.
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APPENDIX A
PROOF OF EQ.6 IN THE PAPER

−f ′(xit) log(
h∗(xit)

1− h∗(xit)
) ≤ −f ′(xis) log(

h∗(xis)

1− h∗(xis)
).

Proof
Since fT (xis) = fT (x

i
t) and fS(xis) = fS(x

i
t),

f ′(xit) = fT (x
i
t)− fS(xit) = fT (x

i
s)− fS(xis) = f ′(xis).

1) fS(x) = fT (x), f ′(x) = 0
Obviously, Eq.6 holds.

2) fS(x) = 0, fT (x) = 1, f ′(x) = 1
Since h∗ is the optimal hypothesis in the source domain,

0 ≤ h∗(xis) ≤ 1/2, log( h∗(xi
s)

1−h∗(xi
s)
) < 0.

Since | log( h∗(xi
t)

1−h∗(xi
t)
)| ≤ | log( h∗(xi

s)
1−h∗(xi

s)
)| (Eq. 5) holds, Eq. 6

holds.

3) fS(x) = 1, fT (x) = 0, f ′(x) = −1
Since h∗ is the optimal hypothesis in the source domain,

1/2 ≤ h∗(xis) ≤ 1, log( h∗(xi
s)

1−h∗(xi
s)
) > 0.

Since | log( h∗(xi
t)

1−h∗(xi
t)
)| ≤ | log( h∗(xi

s)
1−h∗(xi

s)
)| (Eq. 5) holds, Eq. 6

holds.

APPENDIX B
PROOF OF EQ.10 IN THE PAPER
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1
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j
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Proof
It’s equal to prove that
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j
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− log(exp(S(xit, x
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Following the assumption of co-variate shift, when i = j,
I(xit, x

j
s) = 1 − |fS(xit) − fS(xjs)| = 1. When i 6= j, 0 ≤

I(xit, x
j
s) ≤ 1. Besides, exp(S(xit, x

j
s)) > 0. Therefore,

1
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j
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t, x

j
s)) ≥

1

N

∑
i
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Since function log(·) increases monotonically,
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− log(
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