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Abstract Arrival times of seismic phases contribute substantially to the study of the inner working of
the Earth. Despite great advances in seismic data collection, the usage of seismic arrival times is still
insufficient because of the overload manual picking tasks for human experts. In this work we employ a
deep‐learning method (PickNet) to automatically pick much more P and S wave arrival times of local
earthquakes with a picking accuracy close to that by human experts, which can be used directly to
determine seismic tomography. A large number of high‐quality seismic arrival times obtained with the
deep‐learning model may contribute greatly to improve our understanding of the Earth's
interior structure.

Plain Language Summary Deep learning is currently attracting immense research interest in
seismology due to its powerful ability to deal with huge seismic data collections. In this study we
developed a deep‐learning model (PickNet) that can rapidly pick a great number of first P and Swave arrival
times precisely from local earthquake seismograms. The picking accuracy of the arrival times provided by
our PickNet model is close to that by human experts. The data are good enough to be used directly to
determine high‐resolution 3‐D velocity models of the Earth. Our PickNet model can deal with seismic
waveforms provided by data centers of different earthquake networks. Furthermore, our PickNet model is
also a potential tool for automatically picking later seismic phases accurately. A large number of high‐quality
seismic arrival times can be used to illuminate the Earth structure clearly. Hence, this study may greatly
contribute to improve our knowledge of the Earth's interior.

1. Introduction

Arrival times of seismic phases provide key information on the Earth's structure, making them essential for
studying earthquakes (Hardebeck, 2002; Yang et al., 2012) and illuminating the Earth's interior (Nelson &
Grand, 2018; Tkalčić & Phm, 2018; Wang & Zhao, 2012). The significant increase in seismic data collections
is creating an impossible task for human experts to manually pick all the arrival times in these enormous
data volumes. To collect the observed seismic data efficiently, many researchers have proposed a variety
of automatic arrival time picking algorithms, such as short‐term average/long‐term average algorithm
(Allen, 1978; Stevenson, 1976), auto regression with Akaike Information Criterion (Sleeman & van Eck,
1999), higher‐order statistics (Ross et al., 2016; Saragiotis et al., 2002), and so on. Although these classical
automatic picking algorithms are helpful in seismological studies, their performances are less precise than
manual picks, making them inefficient for seismic imaging (Akram & Eaton, 2016; Sharma et al., 2010).
Besides, a threshold is usually required in these algorithms, making them impractical to handle the complex
seismic data. Different from these traditional methods that use only a small number of manually designed
features for seismograms, machine learning methods especially deep neural networks can extract abundant
features automatically from numerous labeled seismic data. Previous studies have tried to solve the picking
problem with shallow neural networks (Dai & MacBeth, 1997; Gentili & Michelini, 2006), but their perfor-
mances were greatly limited because of their low computational speed and simple network complexity at
that time. With the fast development of the graphic processing units and computational technology, recent
studies have achieved remarkable picking performance on the tested seismic data via deep neural networks
(Ross, Meier, & Hauksson, 2018; Ross, Meier, Hauksson, & Heaton, 2018; Zhu & Beroza, 2019). However,
due to the small epicentral distances in the training seismic data set (<200 km), the usefulness of these
deep‐learning models is greatly limited. As a result, these deep‐learning models can only be applied to
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precisely pick arrival times of local earthquakes with short epicentral distances to illuminate the very shal-
low structure of the Earth.

The arrival‐time picking studies have many common features with the edge detection problem, because the
arrival time point can be regarded as the seismic phase edge in one‐dimensional space, which is different
from directly predicting arrival times by regression (Ross, Meier, & Hauksson, 2018) and similar to treating
picking as a segmentation problem by predicting the probability distribution of arrival times (Ross, Meier,
Hauksson, & Heaton, 2018; Zhu & Beroza, 2019). The major difference between treating seismic phase pick-
ing as edge detection and segmentation is that the ground truths in the former are much narrower and shar-
per than those in the latter. Because edge detection has been well studied in computer vision via deep‐
learning models (Ke et al., 2017; C. Liu et al., 2017; Xie & Tu, 2017), we adopt the ideas from these previous
studies and present an end‐to‐end deep‐learning approach (PickNet) to pick first P and S wave arrival times
of local earthquakes with epicentral distances up to ~1,000 km bymapping a normalized seismic record to an
impulse‐like time series, where the position of the impulse peak indicates the picking time. Our PickNet is
designed based on the Rich Side‐output Residual Network (C. Liu et al., 2017) that has rich side outputs of
multiscale and multilevel information. Every output of a branch in our model is supervised, and thus, the
picking task is decomposed to multiple different levels for convolutional filters of different depths to learn,
making the detection more accurate. This advantage is validated by many tasks, such as edge detection (Xie
& Tu, 2017), object detection (Lin et al., 2017), skeleton detection (Ke et al., 2017), and text detection (X. Liu
et al., 2018). Combining these side outputs can make the model robust on signals that possess various scales
and aspect ratios (Y. Liu et al., 2018) like seismic waveforms. The residual units in PickNet can speed up the
training convergence and refine the detection result hierarchically by reducing the residual between the rich
side outputs and the ground truth. Moreover, PickNet is developed under the linear span framework with a
solid mathematical background (C. Liu et al., 2018). By increasing independence of spanning sets and the
enlarged spanned output space, it can gain good performance on the seismic phase picking problem.

We train the PickNet model with ~460,000 first Pwave and ~280,000 first Swave arrival times that have been
manually picked with high accuracy from three‐component seismograms recorded at 782 stations of the
dense High‐sensitivity Seismic Network (Hi‐net) deployed on the Japan Islands. We test our model using
the Hi‐net seismograms of 300 local earthquakes and obtain ~10 times more P and Swave arrival times than
those released by the Japan Meteorological Agency (JMA). These picks are then tested by using them to per-
form a tomographic inversion, resulting in three‐dimensional (3‐D) P and S wave velocity (Vp, Vs) images
that exhibit nearly the same patterns as those revealed by previous tomographic studies of the Japan subduc-
tion zone (Liu & Zhao, 2016; Wang & Zhao, 2012; Zhao et al., 2012). Note that the previous studies used
much more local earthquakes as well as teleseismic events. We also verify the universality of our PickNet
model using data from the China Earthquake Administration (Zheng et al., 2010), the International
Seismological Centre, and the Southern California Earthquake Data Center (Ross, Meier, & Hauksson,
2018). Furthermore, our PickNet model can potentially be extended for picking other seismic phases by
simply changing the training data set, because little information on a specific phase is required. This
data‐driven method can rapidly acquire arrival time picks that approach the accuracy of manual picking
by human experts. Thus, a huge number of seismic data can be used to greatly improve our understanding
of the Earth's interior structure and dynamics.

2. Methods and Data

Deep convolutional neural networks (DCNNs), which are inspired by the connectivity patterns of human
neurons in the visual cortex, use no preprocessing because the network can learn the convolutional kernels
by itself (Agarwal et al., 2018). Therefore, the DCNNs are extremely powerful in performing vision‐based
tasks (Ke et al., 2017; C. Liu et al., 2017), making them well suited for picking seismic arrival times. Here
we define the seismic arrival time picking problem as f[n] = T(g[n]), where f is the output signal that con-
tains information on the seismic arrival time, g is the input observation of the corresponding normalized
seismic waveform, n denotes the discrete time series, and T is an ideal operator. f is a unit impulse that
can be expressed as f[n] = δ[n − N], where N denotes the arrival time picking point. The approximation
of T is obtained using DCNNs that are powerful algorithms for approximating nonlinear functions (Adler
& Öktem, 2017).
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Figure 1. The structure of PickNet model in this study. “dh” and “dw” stand for stride on height and width, respectively. “kh” and “kw” stand for kernel height and
width, respectively. “out_channel” stands for the number of output filters in the convolution. Triangles denote the up‐samplings by deconvolution. Circles
with an inside plus denote the residual units. Deep supervision is applied in training, which means that all tensors at the end of every branch are also supervised
with the ground truth using the same loss function as final output before being fused.
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The deep‐learning model PickNet we employ to estimate T consists of fully convolutional networks con-
structed from a modified VGG‐16 model (Simonyan & Zisserman, 2014) with Rich Side‐output Residual
Networks (C. Liu et al., 2017; see Figure 1). A side‐output layer is added after every layer in the VGG‐
16 model to extract rich convolutional features at different levels. These rich side outputs are combined
with residual units, and then these outputs are supervised with same ground truth as final output in order
to learn the picking task hierarchically. Finally, a multiscale combination strategy with convolutional

layers is used to generate the final output. More details on the
PickNet structure can be found in Supporting Information S1.

The model inputs consist of 12‐s‐long slices from the vertical (Z) compo-
nent and 16‐s‐long slices from the radial (R) and transverse (T) compo-
nents of the seismograms for the first P and S wave arrival time picking,
respectively (Figure 2). Because S wave phase is more complicated than
P wave phase, longer‐length slice containing more waveform information
is used to determine Swave arrival. Two different models are trained sepa-
rately. Onemodel uses only the vertical component to estimate the Pwave
phase, the other model uses the R and T components to estimate the S
wave phase. Each slice is centered on its theoretical arrival time, which
is calculated using the TauP code (Crotwell et al., 1999) and the AK135
velocity model (Kennett et al., 1995). Both inputs of P and S waves slices
are processed using zero‐mean and maximum‐absolute‐value normaliza-
tions. We construct the training stage outputs by setting N to the positions
of manually picked arrival times and obtain the approximation of T using
a large number of input‐output (g‐f) pairs. The testing stage outputs are
calculated using the previously trained model and the corresponding test
seismograms. The outputs are expected to be zero at every time point

Figure 2. Input and output examples of PickNet for picking first P and S wave arrival times. The normalized waveforms
(a and b) of an earthquake recorded at station N.KIDH in Japan are centered in theoretical arrival times as inputs
for the PickNet model. Blue dashed lines indicate the picks, given by human experts, as ground truths, and they are
expressed as unit impulse (c and d). Red dashed lines indicate the picks by the PickNet model and their positions
corresponding to the maximum values indicate the outputs (e and f). Y axes in (e) and (f) represent PickNet output values
calculated with the rectified linear unit (ReLU) activation function at the testing stage.

Figure 3. The number of picks versus epicentral distance in the training
data set. The training data set for both the first P and S wave arrival
times is imbalanced and decreases rapidly with the epicentral distances
exceeding ~110 km.
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except for the positions of the proposed first arrival times. The outputs exhibit sharp spike‐shape patterns,
with the time of the maximum value representing the picked arrival time (Figure 2), because the trained
model is an estimation of T. As shown in Figure S1, if a given seismic arrival is either missing or difficult
to distinguish in its corresponding input, the resultant output yields all zeros, such that no pick is made
for that seismogram.

Our training data set contains ~460,000 first Pwave and ~280,000 first Swave high‐quality arrival times and
the corresponding seismograms of 6,272 local earthquakes recorded at 782 Hi‐net stations. These local
events occurred from 2005 to 2007, and the first P and S wave arrival times were manually picked from
the original Hi‐net seismograms with high accuracy by the staff of Research Center for Prediction of
Earthquakes and Volcanic Eruptions, Tohoku University. Although the size of our training data set for
the first P wave arrival times in this study is smaller than that used by Ross, Meier, and Hauksson (2018),
the epicentral distances of the arrival times in our data set are up to ~1,000 km (see Figure 3), whereas
the maximum distance is less than 200 km in Ross, Meier, and Hauksson (2018). We oversample the inputs
with epicentral distances larger than 200 km by dividing the train set into three different distance bins
(0–220, 220–550, and >550 km) and randomly choosing same amount of instances from each bin for every
training step to handle the negative effect induced by the imbalance in the epicentral distance distribution in
the training data set. Therefore, our PickNet model can make accurate picks for inputs with epicentral
distances of up to ~1,000 km in the testing stage. This is important and useful, because the deeper Earth
structure can only be illuminated by the seismic rays with larger epicentral distances. Details of the training
batch size, loss function, and so on can be found in Supporting Information S1.

3. Result and Discussion

We use ~234,600 seismograms of 300 local earthquakes recorded at 782 Hi‐net stations as the testing data set.
These events occurred from January to June 2016 in Japan, which are randomly selected and consist of 50

Figure 4. Comparisons of the picked arrival times provided by PickNet and Japan Meteorological Agency (JMA) in testing data set. (a) The blue columns indicate
the total number of seismograms recorded at 782 Hi‐net stations. The total number of seismograms is the number of earthquakes multiplying the number of
seismic stations, because each earthquake could be recorded at all stations. All data in the blue columns are used as inputs, and the sky blue columns denote the
picked arrival times by our PickNet model. Light‐coral columns indicate the ideal total number of seismograms recorded at 1,246 JMA stations, and red bars
indicate the picked arrival times provided by JMA. Slashes indicate the numbers of arrival times, which are used to determine seismic tomography. (b) The red and
blue lines show the deviation distributions of the first P and S wave arrival times between the overlapped picks provided by PickNet and JMA, respectively.
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events with M 1.0–2.0, 100 events with M 2.0–3.0, 100 events with M 3.0–4.0, and 50 events with M >4.0. It
took only ~5 min for our PickNet model to analyze these seismograms using a GEFORCE GTX1080Ti gra-
phic processing unit.

We obtained 97,998 Pwave and 92,229 Swave arrival times of the 300 events recorded at 782 Hi‐net stations
(see Data Sets S1 and S2). In contrast, the JMA only provided 13,765 P wave and 8,643 S wave arrival times
for the same earthquakes recorded at 1,246 seismic stations (including 782 Hi‐net stations and 464 stations of
other local networks; Figure 4a), because JMA only picked the arrival times at stations close to the epicenter
so as to locate each event quickly. Among the arrival times provided by JMA, 6,725 Pwave and 4,656 Swave
arrival times were recorded at the Hi‐net stations. As a result, there are 6,524 Pwave and 4,425 Swave arrival

Figure 5. Comparison of picked arrival times of an earthquake recorded at Hi‐net stations provided by PickNet and JMA.
The station code, trace start time, and epicentral distance are shown above each seismogram. Red and blue lines
indicate the first arrival times provided by PickNet and JMA, respectively. The blue line is masked by the red line when
they are at the same position. Additional arrival times of this earthquake provided by PickNet are shown in Figure S9.
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times, with both the PickNet and JMA picks for the same earthquake‐station pairs. Therefore, the false
negative rates are nearly 2.99% and 4.96% for P and S wave arrival times, respectively. We use
“deviation,” which is the absolute value of the picks by PickNet minus the corresponding one picked by
human experts, to evaluate the accuracy of PickNet. These overlapping arrival times are analyzed to
demonstrate the reliability of the PickNet results. Figure 4b shows that 73.91% (85.41%) of our first P
wave picks have deviations of less than 0.05 s (0.10 s), and 60.75% (77.47%) of our first S wave picks have
deviations of less than 0.10 s (0.20 s) from the JMA picks. Figure 5 shows comparisons of the picked
arrival times for a local earthquake recorded at Hi‐net stations provided by PickNet and JMA. Figure S2
shows additional PickNet picks for the same local earthquake, and the Data Sets S1 and S2 show all the
picked arrival times of the 300 earthquakes by the PickNet model. The comparisons indicate that our
PickNet model exhibits a similar performance to human experts in distinguishing the first P and S wave
arrival times, with the automatic picks well within the range of picking errors. The larger deviations of
the S wave picks than those of the P wave picks (Figure 4b) are likely due to the more complex patterns
of the S wave seismograms. That is why all the seismic network data centers in the world always pick a
smaller number of S wave arrival times with a lower picking accuracy than those for P wave arrival
times. In addition, the number of S wave arrival times is approximately half that of the P wave arrival
times in our training data set, which also reduces the PickNet picking performance for S wave arrival
times. We have also analyzed the PickNet performance at different signal‐to‐noise ratio (SNR) bins and
epicentral distance bins (Figure 6). The same as Ross, Meier, and Hauksson (2018), we define SNR as the
ratio between the peak absolute amplitudes in the range of 0.5 s after and 0.5 s before the target pick.
The PickNet performance decreases when SNR is less than 2 (Figures 6a and 6c), suggesting that a
postprocessing to discard those picks with a low SNR should be done to improve the reliability of results.
The PickNet performance for the long‐distance picks is not as good as that for the short‐distance ones
(Figures 6b and 6d) because of the lack of a long‐distance training data set even with oversampling applied.

As a test of the picked data, we used the P and Swave arrival times of 299 earthquakes picked by the PickNet
and JMA to conduct tomographic inversions. Note that one event occurred very far from the seismic network
on the Japan Islands, and so it is not used in the inversions. The computer program Tomog3d (Zhao et al.,

Figure 6. The PickNet performances for different SNR bins (a, c) and epicentral distance bins (b, d). SNR = signal‐to‐noise ratio.
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1992, 2012) is applied to simultaneously invert for both 3‐D Vp and Vs variations of the Japan subduction
zone. The initial velocity model is constructed from a slightly modified J‐B velocity model (Jeffreys &
Bullen, 1940) with lateral depth variations of the Conrad and Moho discontinuities and the upper boundary
of the subducting Pacific slab (Zhao et al., 1997, 2012). The Pacific slab is assumed to be 85 km thick and with
4% faster Vp and 6% faster Vs than those of the surrounding mantle in the starting velocity model (Zhao
et al., 1992). To express the 3‐D velocity structure, a 3‐D grid is set up in the study volume with a horizontal
grid interval of 0.5° and with grid meshes at depths of 0, 20, 40, 60, 90, 120, 150, 200, 300, and 400 km. In the

Figure 7. Distribution of (a, b) P and (c, d) Swave ray paths used to conduct the tomographic inversion. The P and Swave
arrival times are obtained by our PickNet model. The numbers of the earthquakes (green dots), seismic stations (red
squares), and ray paths (black lines) used are shown at the upper‐left corner of (a) and (c). The earthquakes are relocated
during the inversion process.

10.1029/2019JB017536Journal of Geophysical Research: Solid Earth

WANG ET AL. 8



Figure 8. East‐west vertical cross sections of P and S wave tomographic images. The arrival times used to determine the
tomography are obtained by our PickNet model. Locations of the cross sections are shown in the inset map. The red and
blue colors denote low and high velocity anomalies, respectively, whose scale is shown at the bottom. The curved lines
denote the Conrad and Moho discontinuities and the upper boundary of the subducting Pacific slab. The dashed lines
denote the estimated lower boundary of the subducting Pacific slab whose thickness is assumed to be 85 km in the
inversion. The red and blue triangles denote the active and quaternary volcanoes, respectively. The white and red dots
denote normal earthquakes and low‐frequency microearthquakes (M < 2.5), respectively, which occurred during 2002 to
2007 within a 5‐km width of each cross section.
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Figure 9. Comparison of the performances between PickNet and JMA on picking long‐distance arrival times of regional earthquakes in 2018. The labeling is the
same as that of Figure 5.
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tomographic inversions, the P and S wave arrival times with travel‐time residuals (i.e., difference between
the observed and theoretical travel times) greater than 1.8 s are excluded. The P and S wave ray coverages
obtained by PickNet (Figure 7) are much denser than those of the JMA picks (Figure S3). The tomographic
results from the PickNet data (Figure 8) and the JMA data (Figure S4) are obtained after four iterations of the
inversion. The local earthquakes are relocated (Engdahl & Lee, 1976) using the P and S wave arrival times
and the resultant 3‐D velocity models.

The tomographic images (Figure 8) obtained with the PickNet data reveal similar velocity features to
those of the previous tomographic models obtained with much more data of local earthquakes as well
as teleseismic events (Liu & Zhao, 2016; Wang & Zhao, 2012; Zhao et al., 2012). Low‐velocity anomalies
are revealed in the mantle wedge beneath active arc volcanoes and back‐arc areas, and low‐frequency
microearthquakes (M < 2.5) occur in the lower crust and uppermost mantle beneath the active arc volca-
noes, which are closely associated with the magmatic and volcanic activity (Hasegawa & Yamamoto,
1994; Niu et al., 2018). Some nonvolcanic low‐frequency events (denoted by the red arrow in section D of
Figure 8) are generated by slips on the gently subducting Philippine Sea slab interface (Shelly et al., 2007),
and the subducting Philippine Sea slab is imaged as high‐velocity anomalies with considerable variations
in dip angle and subduction depth (H1 in section D and H2 in section E of Figure 8). These velocity fea-
tures are also revealed by a tomographic inversion with a starting model without the Pacific slab
(Figure S5), though the subducting Pacific slab is not well recovered because only 299 earthquakes
selected randomly are used in the tomographic inversion. However, these velocity features are poorly
imaged or absent in the tomographic images obtained with the JMA data of the 299 events (Figures S4
and S6), because the JMA data set contains a smaller number of P and S wave arrival times than that
of our PickNet data set. The direct application to seismic tomography indicates that false positive rates
of P and S wave arrival times provided by PickNet are relatively low and confirms the reliability and
practicality of our PickNet method.

We have also investigated the PickNet performance on long‐distance seismograms. We collected all the P
and S wave arrival times recorded at the Hi‐net stations with epicentral distances greater than 440 km pro-
vided by JMA during the year 2018, including 554 Pwave and 129 Swave arrival times.We compare the JMA
data with the PickNet picks (see Figures 9 and S7 and Data Set S3), and the result shows that the PickNet
performs well on the long‐distance seismograms, though the picking accuracy is lower than that on the
short‐distance seismograms. The SNR of seismogram decreases as distance increases, which causes the
lower picking accuracy on the long‐distance seismograms by both human experts and the PickNet model.
The PickNet performance on long‐distance seismograms would be improved by adding more high‐quality
long‐distance picks into the training data set.

We have tested our PickNet model on local earthquakes recorded at stations in China and United States and
obtained ~6 times more P and S wave arrival times with a similar quality to those provided by China
Earthquake Administration (Zheng et al., 2010; Figures S8 and S9) and International Seismological
Centre (Figures S10 and S11). We have also trained and tested our deep‐learning method using a large num-
ber of P wave arrival times provided by Southern California Earthquake Data Center (Ross, Meier, &
Hauksson, 2018) and achieved good performance with 78% of the automatic picks having deviations of less
than 0.03 s from the manual picks (Figure S12). These tests verify the generalization of our PickNet model,
although our model is only trained with a seismic data set recorded at the Hi‐net stations. Hence, the
PickNet model can be widely used to pick high‐quality P and S wave arrival times from seismograms
recorded by different seismic networks.

4. Conclusions

In this work we have developed the PickNet model that can be used to pick high‐quality P and Swave arrival
times of local earthquakes. The PickNet model can be further improved to automatically pick other seismic
phases (e.g., PmP, SmS, and PKiKP) accurately when a large high‐quality training data set is provided
because little information on a given seismic phase is required. Our study highlights how a deep‐learning
approach can efficiently mine arrival time information from vast seismic datasets and provide a powerful
tool for enhancing our knowledge of the Earth's interior structure.
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