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A new cascaded L1-norm minimization learning (CLML) method for pedestrian detection in images is
proposed in this paper. The proposed CLML method, which is designed from the perspective of Vapnic's
theory in the statistical learning, integrates feature selection with classifier construction via solving
meaningful optimization models. The method incorporates three stages: weak classifier learning,
strong classifier learning and the cascaded classifier construction. In the weak classifier learning, the
L1-norm minimization learning (LML) and min-max penalty function model are presented. In the
strong classifier learning, an integer programming optimization model is built, equaling the reformula-
tion of LML in the integer space. Finally, a cascade of LML classifiers is constructed to promote detection
speed. During the classifier learning and pedestrian detection, Histograms of Oriented Gradients of
variable-sized blocks (v-HOG) are used as feature descriptors. Experimental results on the INRIA and
SDL human datasets show that the proposed method achieves a higher performance and speed than the
state-of-the-art methods.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Detecting objects in images and videos is one of the funda-
mental tasks of pattern recognition and computer vision. It has
many important applications in robot vision, visual surveillance,
image retrieval and driving assistant systems, etc. Pedestrian
detection is regarded as one of the most difficult and typical
problems in object detection owing to the various appearance and
pose of a human body together with the cluttered background
under different illuminations.

Extracting more effective features and developing more
powerful learning algorithms (classifiers) have always been the
pursuits of researchers for pedestrian detection. In this paper, we
focus on developing a powerful feature selection and classifica-
tion method in a comprehensive way.

In the field of statistical learning, VC-dimension is one of the
core concepts, which measures the generalization capability of a
classification function set. However, it sometimes is hard to
quantitatively measure the VC-dimension. Consequently, the
other optimization principles are chosen to replace VC-dimen-
sion. In the classifier construction, the margin maximization is the
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state-of-the-art method, which is in fact as an alternative of
pursuing VC-dimension minimization [1,2]. SVMs and Adaboost
are the state-of-the-art classifiers for pedestrian detection. One of
the most important reasons for the success of SVMs and Adaboost
is that both methods aim to directly or indirectly maximizing the
margin. In this paper, we make an attempt to design the
classifiers in the light of pursuing a smaller VC-dimension.

We design a cascaded classifier by incorporating the principle of
L1-norm minimization into the test error upper bound. The
intuition that we adopt L1-norm comes from the successful
application of L1-norm in the fields of face recognition [5], human
detection [19,25] and compressive sensing of signals [3,4,22] in
recent years. More importantly, in the field of signal processing,
L1-norm minimization can be considered as an approximately
optimal implementation of the LO-norm minimization [3]. In
addition, the early studies of L1-norm are also presented in
[37-39]. In [37], the object function in optimization model is
comprised of the L1-norm term of the point average violation
and an appended term. The appended term is expressed as the
number of nonzero elements of the weight vector (the LO-norm of
the weight vector), and is approximated by the concave exponen-
tial function. It is an earlier prototype using L1-norm to measure
the violation degree of points. It adopts the concave exponential
function to facilitate to solve the model, which is different from our
object function of the weak classifier. In [38], the authors propose
L1-norm support vector machine and introduce an efficient
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approach to solve it. In [39], L1-norm support vector machine is
formulated by the unconstrained convex differentiable minimiza-
tion, which is solved by applying a Newton method. These works in
[38,39] present the L1-norm support vector and mainly research
how to solve L1-norm support vector machine. Both of these
optimization models accord with our weak classifiers. We more
focus on using the sparseness of the L1-norm to select features and
simultaneously construct classifiers for human detection.

During the construction of our classifiers, the weak classifiers
are learned by the L1-norm minimization principle. The min-max
penalty function is employed to determine the appropriate
thresholds for the weak classifiers. After obtaining the weak
classifiers, we utilize the integer programming optimization
model to select the minimal number of them to construct a
strong classifier and simultaneously select the most compact
features. The cascade mechanism is employed to achieve high
detection speed, in which the number of cascade is added until
expected performance is met. The final classifier inherits the
advantages of both cascade and L1-norm minimization learning
method, and obtains higher performance on classification accu-
racy and efficiency, which are validated on two pedestrian
detection datasets.

The contributions of our work are summarized as follows:

1) Construct a classifier from the perspective of the upper bound
of error via VC-dimension.
Both weak and strong classifiers are constructed to pursue a
smaller error upper bound via VC-dimension. The weak
classifiers are trained via L1-norm minimization learning and
the strong ones are constructed by the integer programming
optimization. The integer programming can be viewed as a
special case of L1-norm in integer space. The relationship
between the Ll1-norm minimization and VC-dimension is
explained. The result is that the L1-norm minimization can
contribute to a smaller upper bound of error via VC-dimension
and then improve the generalization ability of the classifiers.

2) Fuse feature selection with classifier construction for pedes-
trian detection in a new way.
Feature selection and the strong classifier construction are
achieved simultaneously. Inspired by weighted voting princi-
ple stemming from the Adaboost method, we utilize a linear
weighted combination of weak classifiers to construct a strong
classifier. The difference between our method and the Ada-
boost lies in two aspects. Firstly, the way to select features is
different. Feature selection of the Adaboost is performed with
an iterative greedy strategy while ours is with the integer
programming. The integer programming can find out the
optimal combination of features. Moreover, this way can
reduce redundancy and contributes to efficiency. Secondly,
our approach to determine the thresholds of weak classifiers
solved by the min-max function is simple and flexible, which
is also different from that of the Adaboost.

The rest of this paper is organized as follows. Related work is
introduced in Section 2. The feature representation of pedestrian
is described in Section 3. The CLML method for pedestrian
detection is presented in Section 4. The experiments are pre-
sented in Section 5 with conclusions in Section 6.

2. Related work

Two main processing steps are utilized in a typical pedestrian
detection algorithm. One step is feature representation during
which the descriptor is extracted to represent the human body,
and the other is classification model with which the extracted

descriptors of a region are used to detect whether the region
contains a human body.

In the aspect of feature representation, various features are
proposed to represent a human body. Some shape clues [6,26]
draw more attention. Complex human shape models are learned
from the shape contour examples modeled by discrete and
continuous representation methods [26]. Non-adaptive Haar-like
wavelet features based on the local intensity differences have been
proposed by Papageorgiou and Poggio [27], which are further
improved by other researchers [7,18,28,35]. In [7,35], the over
completed Haar-like wavelet features are utilized to represent a
face and a pedestrian at various locations on different scales. Later,
some adaptive features considering the particular configuration of
spatial constraints are proposed by Munder and Gavrila [20], and
Szarvas et al. [31]. A typical one of such features is the local
receptive fields [20] simulating the neural structures of human
visual cortex [32]. The well-known dense histograms of oriented
gradients (HOG) descriptors in [8] are proposed to capture the local
contours of a pedestrian. The HOG descriptors of each block are
computed on a fixed scale at a fixed location to save computational
cost. Finally, many variants of HOG are presented in [9,12,14].
These descriptors based on gradient orientations are extracted on
variable-size blocks and different locations. Results from their
reports are better than the original HOG descriptors. In [29], some
color clues are captured as the descriptors of objects. Tuzel et al.
[10] utilize covariance (COV) features as the pedestrian descriptors.
A local image region is represented by the covariance matrix of
point descriptor which consists of intensity, location, derivatives,
etc. Mu et al. [11] propose the improved LBP to represent human
by considering geometrical position and frequency information. In
[12], the authors combine the HOG with LBP descriptors to
characterize the local and global clues of a human body. Moreover,
local clues are implemented to handle the occlusion problem. In
[13], edgelet features consisting of silhouette oriented features are
introduced as human part descriptors. All part descriptors are
combined to form a human model. In [33], high-dimensional
descriptors containing edge-based features with texture and color
are utilized to represent the human body.

After obtaining feature representation, some methods have
been employed and developed for feature selection and classifica-
tion for pedestrian detection. In [33], the authors employ partial
least squares (PLS) to perform feature dimension reduction, and
then use SVMs to classify pedestrians. In [6], the statistical field
model is utilized to characterize the shape variation of pedes-
trians and classify pedestrians. In [7], the authors propose cascade
mechanism and use Adaboost cascade to select features and make
a classification. Since then, the cascade structure has been widely
used to detect objects. In [40], the paper proposes to integrate
cascade structure with multiple instance learning (MIL) in a
modified “min-max and L1-norm” framework to detect the
diseased structure in medical images.

In our most recent work [19], a linear classifier for human
detection based on L1-norm minimization is proposed. Although
it can perform better than some existing methods, however, it
still cannot attain a higher detection rate. Our later work [25] has
been extended and a cascaded LML are designed to perform
feature selection of blocks and obtain better performance for
human detection. In [10], the authors firstly transform the
features into tangent space of Riemannian manifolds, and then
use a cascade of Logitboost for classification. In [8,11,18,30] linear
or kernel SVM is employed for classification. In [9], the authors
use linear SVM to form weak classifiers and then build an
Adaboost cascade mechanism for pedestrian detection. A multi-
layer neural network has been introduced into pedestrian detec-
tion using adaptive local receptive field features [31]. Regarding
the specificity and difficulty of a pedestrian detection problem,
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many pedestrian detection approaches [13,15-18,41-43] propose
to break down the appearance of the human body into parts.
Furthermore, additive combinations of classifiers are utilized to
detect pedestrians [36]. In addition, Lin et al. [34] combine local
part-based and global template-based schemes to detect pedes-
trians via Bayesian framework. In [41], the pictorial structures are
proposed to partition a human body into head, torso, leg area, etc.
Andriluka et al. [42] use pictorial structures to detect humans and
estimate the pose of humans. Later, Felzenszwalb et al. [43]
combine the global coarse detection with local pictorial structure
for human detection and obtain a better result.

In terms of the work mentioned above, the classification methods
for pedestrian detection generally can be divided into two categories.
One is probability and reasoning method such as Bayesian Reasoning
and the other is deterministic methods such as template matching,
Neural Networks, Adaboost and SVMs, etc. Template matching
methods employ some rules (distance and so on) to measure the
similarity of feature vectors in a feature space. Neural Networks has
many extensions according to different network structures. Most of
them evaluate the optimal decision boundary by minimizing an error
criterion with regard to some network parameters. In contrast to
Neural Networks, SVMs [1] do not minimize the error metric but
maximize the margin of a linear decision hyper plane. To cope with
the samples not distinguished by a linear classifier, SVMs employ the
Kernel-theory [30] to project feature vectors into a high-dimension
space, where all samples can be discriminated by a linear classifier.
Adaboost [2] is another way to get the margin maximization which
constructs a strong classifier using a linear weighted combination of
weak classifiers. Simultaneously, it can perform the task of feature
selection via iteratively adjusting weights of the samples, and the
process can be considered as a greedy strategy.

Munder et al. have carried out an experimental study on
pedestrian classification, and they conclude that SVMs perform
best, and the cascaded Adaboost approach achieves the compar-
able performance at much lower computational costs for pedes-
trian classification [20]. It can be seen that SVMs and Adaboost
are both state-of-the-art classifiers for pedestrian detection.
However, SVMs cannot appropriately select features in the
detection procedure, although its performance is generally better
than other classifiers. Compared with SVMs, the speed of cas-
caded Adaboost can be much higher, while the choice of thresh-
olds for its weak classifiers is a bit trivial due to the observation of
the feature distribution of a large number of samples. This paper
provides a new viewpoint to develop a method integrating
feature selection with classification for pedestrian detection.

3. Pedestrian representation

Dalal and Triggs [8] propose the Histogram of Oriented
Gradients (HOG) descriptors in a fixed size and fixed position
blocks to represent a human body. The success of HOG descriptors
lies in its adopting statistical information of gradients to char-
acterize the local contour of a pedestrian. However, Zhu et al. [9]
consider fixed-size HOG blocks miss some global clues. Therefore,
they use variable-size HOG (v-HOG) blocks on various scales to
capture more information and report better results. In this paper,
we employ v-HOG blocks to extract feature descriptors as a
pedestrian representation. For the v-HOG feature extraction of a
64 x 128 sample image, the ratio of the width to the height of a
block is either 1:1, 1:2 or 2:1. Blocks range in size from 12 x 12 to
64 x 128. Each block consists of 2 x 2 cells and the size of each cell
is 8 x8 pixels. Gradient orientations of pixels in a cell are
accumulated to discrete 9 histogram bins. A 36 dimensional
vector concatenating gradient orientation histograms of four cells
in a block is extracted. More details of the feature extraction
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Fig. 1. Three v-HOG feature blocks with different sizes at different locations. The
x-axis denotes the dimension of the feature vector and the y-axis denotes the
value of the feature vector.

procedure can refer to [9]. In Fig. 1, we illustrate v-HOG features
extracted from blocks of different sizes at different locations.

4. The proposed learning method

The proposed method is based on an L1-norm minimization
learning (LML) framework, which is used to build weak classifiers.
The strong classifiers are achieved using the integer programming
optimization method.

4.1. L1-norm minimization learning framework

A general linear classifier y=w'x+0 can be viewed as a
decision hyper plane, where w is a normal vector (weight vector)
of the decision hyper plane with 0 as a threshold. All linear hyper
planes (linear classifiers) comprise a set called the linear function
set. In our work, we calculate the normal vector of a linear
classifier via L1-norm minimization learning (LML). The frame-
work is shown as

min||w|,
s.t. constrains of w €))
where weR" and|w|; = >_7_, [w/|-|-| denotes the absolute value

operator. L1-norm minimization is the approximately optimal
solution of LO-norm minimization which aims to find a normal
vector having the fewest nonzero components, which is also
called sparseness. It should be mentioned that the L1-norm
minimization can lead to minimize the upper bound of test error
when the training is given. The upper bound on the test error of
classifiers is given by

\/h(log(ZN/ h)+1)—log(1/4)
+ N

where Ry, is the training error, h is the VC-dimension of a set of
classification functions. It can be seen that the error upper bound
consists of the training error and a function of VC-dimension. A
smaller VC-dimension can result in a smaller error upper bound
when the training error is given. N is the size of the training set
(restriction: this formula is valid when the VC-dimension h is
smaller than N).

The minimization of w given by L1-norm is to get the fewest
nonzero components of w, and this aims to pursue the dimension
n of w as low as possible. Correspondingly, it equals to make the
weight vector w sparse. All k-sparse weight vectors and thresh-
olds comprise a sparse linear function set. It has been shown a
sparse linear function set has a smaller VC-dimension than linear
function set in [44]. Therefore, the L1-norm minimization for the
weight vector of the linear classifier can result in a smaller
VC-dimension.

)

Rtrain
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In this paper, the forms of weak-classifiers and strong classi-
fiers are both linear ones, which are obtained by employing the
L1-norm minimization and integer programming. Furthermore,
Riqin in our training procedure is boundary, guaranteed by
constraints in integer programming. Therefore, our method pur-
sues a smaller VC-dimension and then minimizes the error upper
bound [1]. For more details of the relationship between the
VC-dimension and sparseness, please refer to [44] which have given
the rigorous bound of VC-dimension of a k-sparse linear function.

4.2. Weak classifier construction
4.2.1. Learning the normal vector of a weak classifier

The weak classifier in the linear style is learned by Model I
based on the LML framework.

Model I:
N
min ||wy]|[, +C i 3
min el +€ >4 ®
Vi hex) = a—=¢&;
s.t.d h(x) = wix; “4)
=0

In Eq. (3), wy is the normal vector of the kth weak classifier. ¢&;
is used to measure misclassification degree of the ith training
sample. N is the number of all training samples. C; is a predefined
parameter to balance the minimization of the misclassification
degree and L1-norm of the normal vector. x; represents a 36
dimensional v-HOG feature vector of the ith sample, and y; is the
class label of the sample.  is a fixed and predefined parameter to
guarantee the separability of the training samples. C; combined ¢&;
with the constraints Eq. (4) ensures that certain percent of the
training samples can be correctly classified. The larger C; is, the
smaller the sum of &; should be, which means fewer misclassified
samples. C; is assigned a larger value than 50.0 empirically.

It is known that L1-norm is not differentiable, which makes
Model I difficult to be solved directly. There is, however, a simple
and relatively common transformation that allows this problem
to be solved effectively. Details converting the optimization
model refer to [14] and the Interior Point methods solving the
optimization model consult [21].

4.2.2. Threshold determination

In a weak classifier construction procedure, after obtaining its
normal vector, we need to determine a threshold. To meet a high
detection rate, it is not always available to adopt the value of
a—¢&; of Eq. (4). Furthermore, it is exhausting to balance each
threshold based on the feature distribution of positives and
negatives as in Adaboost. We build a min-max penalty function
model to solve a threshold in terms of the Game Theory. Our goal
is to get the threshold which can balance the misclassification
between positives and negatives best.

Model II:

PN
n};in <r1 ( Z maX{O.Qkhk(Xpos)}>>

k pos=1

NN
+r2< Z maX{O,hk(Xneg)9k}> ©)

neg =1

where 0, eR is the threshold of the kth weak classifier, which is
the only variable in Model II, xp,s denotes feature vector of the
positives and xpg of the negatives. PN is the number of positives
and NN is negatives. N=PN+NN. Using the gained normal vector
wy, we can get the value of hy(x) via computing the inner-product
of the feature vectors of the training samples and the normal

vector. Function

0if t<O0

0,t} = .
max{0.} {t otherwise

rneR, meR
are penalty factors.

We explain the meaning of this model as follows. The deter-
mination of the threshold is a dynamic process in which the
positives and the negatives participate. max{0,t} is the maximum
misclassification degree of both positives and negatives. The
positives pursue a lower threshold 0, to make 0y — hi(X,05) <0 in
order to minimize the misclassification degree max{0, 0y —hy(Xpos)}.
On the contrary, the negatives endeavor for a higher threshold to
minimize the maximum misclassification degree of negatives.

In real application, pedestrian in still image is a rare-event
because the number of pedestrian patches is much less than non-
pedestrian’s. Furthermore, the numbers of pedestrian and non-
pedestrian in training samples are also unbalanced. Therefore, the
optimization model employs two penalty factors ry, r, between
positives and negatives to balance the asymmetry. How to set the
values of these two factors is described in the experiments
(Section 5.1).

The optimization Model II is an unconstrained convex pro-
gramming and can be converted into linear programming [21].
After solving the Models I and II, we obtain a weak classifier

g (x) = sign(hy(x)—0y) = sign(wix—0y) (6)

where sign(-) is a sign function.

4.3. Strong classifier construction

With respect to the computation cost and redundancy existing
in feature representation, it is unadvisable to make all weak
classifiers contribute to the final strong classifier, which is
consistent with the principle of building a classifier as ‘Many
can be better than all’ [23]. We employ a global integer program-
ming method to form a strong classifier:

G(x) =

M
1) agx)-05)=0
k=1 (7)

0 otherwise

where a;, = log[(1—¢&)/¢] is the weight of the kth weak classifier
and ¢ is the training error rate. In Eq. (7), 4 is a 0/1 binary
variable. 4,=0 means that the kth weak classifier is not selected
and Ax=1 selected. On the basis of these definitions, we construct
Model III to solve .

Model III:

M N
min Y 4 +C Y m
Al =1 i=1
RVESEY]
> n;<01PN
s.t. i€ pos )
Z n; < O'ZNN

ieneg

where #; is also a 0/1 binary variable which corresponds to the ith
training sample. If the ith sample can be correctly classified by the
combination of selected weak classifiers, then #;=0. Otherwise
ni=1. M is the number of weak classifiers and C, is a predefined
factor.

To facilitate the writing and concise expression, the forms of
vectors and some notations are introduced. Let A=[Aq,...
Jio-- 2117 and n=[#1,...npn...nN]". A is a matrix formulation of
which the ith row is the ith constraint conducted by the ith
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sample, as

A= (—a181(Xp),- - ., —AZr(Xp),- . .,—aAmEm(X:),0.5(a1 + - - -ay)) if x; e positives
) (a181(%p),- - Qk8r(Xi), - - AMEM(Xi),—0.5(a1 + - - - am)) if x; e negatives

C)]

r3eR is a predefined slack factor which ensures the constraint
equations A4 <37 to have a feasible solution. In other words, the
classification result of the ith sample can range in [0,r3] instead of
[0,1]. AA<rsn is actually the reformulation of Eq. (7) by sub-
stituting O into the vector r3. o4is the maximum misclassified
rate of positives, and o, is the maximum false positive rate (see
Section 4.4). 1PN and g,NN are the upper bounds of the number
of misclassified positives and negatives, respectively.

On the condition of meeting the constraints, the objective
function in Model III aims to pursue nonzero components in 4, #
as minimal as possible. C; is a predefined factor. Since the vectors
of Ay are positive and their components can just be 0 or 1,
S 1 Ak+Ca Y01 mjis equivalent to S || +Co XNy [yl It
can be further transformed into ||A|,+C2|#n|,—1 in integer
space. ||4[1and |#]1, respectively, are the L1-norm of the vector
/4 and 5 in the integer space. This minimization of objective
function in Model III can be considered as a special case of LML in
the integer space.

The optimization Model III is a typical 0/1 integer program-
ming problem, in which objective function and constraints are
linear. We use the improved the Branch and Bound algorithm [21]
to solve this problem. The basic idea of this algorithm initially
converts the integer program into many sub problems (branches)
and then compares the solutions of all branches.

We add some practical requirements and restrictions into this
program (Section A.1). In the first several cascades, we hope the
number of weak classifiers is as few as possible and we restrict
the total number of them to 10 to decrease the search space. As
the number of cascade increases, the number of weak classifiers is
gradually increased and the restriction is gradually relaxed.
Although we use the idea of branch and bound algorithm, the
sub problems of this model are no longer the linear program. We
improve the branch aiming at the specific constraints.

Here, we first fix the value # to solve 4, and then change 7 to
form several branches during using the branch and bound
method. According to the last two constraints in model, we can
estimate at most how many #; is one. Then, we rank the
misclassification degree of each feature and select the top hardest
01PN positives and ¢,NN negatives. The corresponding m); of these
samples are set one and others are zero, and then solve /. This is
the first branch. The other branches can be obtained via changing
the value #;. The cascade requires the most of positives should be
correctly classified. Therefore we only circularly reduce the
number 1PN and do not change the number ¢,NN unless the
last levels of cascade.

An initial solution first chooses the weak classifier with the
highest classification rate and assign its A, to 1. Then, it searches
other complementary classifiers (which can correctly classify the
misclassified sample by the first selected classifier) until the
constraints are met. At this time, the value of object function is
chosen as a lower-bound. Then it repeats this process and
compares the object function of other sub branches with the
lower-bound. If the value of object function is bigger than the
lower-bound, then abandon this sub branch. Otherwise, a solution
of this branch is obtained. Then, the optimal solution can be
obtained by comparing all left sub branches.

4.4. Training the CLML classifier

The cascade mechanism is adopted, which is a classic techni-
que to promote detection speed. In each level of the cascade,

some weak classifiers are selected to form a strong classifier. The
strong classifier is implemented using the integer programming
model. The convergence of cascade mechanism can refer to [7]. In
the training procedure, the final detection rate and false positive
rate decrease as the number of cascade increases. Therefore, we
need to choose the number of cascade and balance the detection
rate and false positive rate. The requirement, a minimal detection
rate is 0.998 and the maximum false positive is no more than 0.3,
is met in each cascade stage. In accordance with the Model III, we
set 0;=1-0.998=0.002, g, < 0.3. The training procedure of CLML
is as follows:

Algorithm 1. The cascaded Ll1-norm minimization learning
(CLML) method

Input: the minimal detection rate, maximum acceptable false
positive rate in tth level of the cascade
POS: set of positives
NEG: set of negatives
Frarger: target overall false positive rate
fi: false positive rate in tth level of cascade
D, is detection rate in the tth level of cascade
Initialize: t=0,Fp=1.0, Dy=1.0
While F; > Ftarget
-Train weak classifiers using POS and NEG samples,
compute normal vectors and thresholds
—t=t+1, 4,=0
—0,=0.7—-4,
if there is no solution for Model III
increase A.=A4,+0.1
else
1. Solve integer programming Model III
2. Evaluate Pos and Neg by the current strong classifier
3. Compute f; under this threshold
-End
~Fe1=Fexfi
—D¢1=D¢x(1-01)
-NEG 0
-Evaluate the current cascaded detector on the negatives, i.e.
images without human and add misclassified samples into
set NEG
End
Output: A t-level cascade strong classifiers

In this paper, it takes 15 days to achieve certain detection
accuracy. At the beginning of training, it needs more time. Then, it
needs less time in last cascades as the number of both blocks and
negatives decreases. The platform is on Pentium IV 3.0 GHZ CPU
and 2.0 G MEMORY with the matlab program and three PC are
used to perform the parallel computation. Although the computa-
tional cost of global selection is a bit expensive compared with
the local one in the training procedure, the training process is
offline process. It only needs to store the weight vectors and
thresholds of the selected weak classifiers in each cascade. Thus,
it does not have an effect on the detection process. To speed up
the training, we will continue to improve the solving method and
realize it in C++ language in future.

4.5. Discussion

Compared with L2-norm used in SVMs, L1-norm is effective for
achieving sparseness which appreciates the differences of feature
vector. L2-norm emphasizes more on “average variation”, which
means each element of a vector varies almost equally, cannot
result in sparseness. Hence, L1-norm is adopted in this work.
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To be mentioned, the sparse features selected by L1-norm can
alleviate the occlusion and variations of views problems to some
extent. The view variation of training samples cause the differ-
ence of features in the corresponding positions, but the different
views may have some common clues. Here, the concept “common
features” does not mean the total same, but denotes the almost
similar response. For example, some common features of the front
view sample can be obtained through removing the different
features and remaining the common features from nearly front
view. It can also be considered the different features of two views
are occluded by non-person objects and only keep the common
features. The sparsity can be viewed as a feature selection
process. It can learn these common features as the important
and principle components, when the training samples deriving
from the different views are used. In this sense, the sparsity has
the tolerance to view variation to some degree.

We adopt integer programming to construct the strong classi-
fier. The way of selecting features and determining threshold are
different from Adaboost. Adaboost employs re-sampling principle
to adjust the weight of each weak classifier, and then adopts
greedy strategy iteratively to select features. Instead, our method
tries to select features in a new way. Our method aims to globally
select the minimal weak classifiers, instead of locally iterative
selecting the features. Of course, the computational cost of this

selection is a bit expensive compared with the local one used by
Adaboost in the training procedure. However, the higher compu-
tational cost during training is worthy if we can alleviate the
burden of detection.

Although it has been proven that the error upper bound of
Adaboost exists in a probabilistic framework, it may not always
obtain the global optimal “Bag-of-features” owing to its feature
selection strategy. In other words, Adaboost may become
unstable, and hence select more redundant feature to achieve
the acceptable performance. From training samples arranged in
XOR-like layout, we give a comparison between our method and
Adaboost in Section A.2 of appendix. From that, we can see our
method is dedicated to obtaining the compact features and more
suitable for detection problem.

5. Experiments

There are about 2400 training positives from MIT and SDL [24]
and about 4900 negatives from INRIA datasets. We use 1000
positives and 2000 negatives in the first cascades. More negatives
will be added in the cascaded training process to ensure the ratio
of the positives to negatives. In Fig. 2, some training samples are
displayed.
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Fig. 3. Classification accuracy with different r/r, ratios.
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Fig. 5. Feature blocks: (a) blocks selected in the first level, (b) in the second level
and (c) in 15th level of the cascade.
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Fig. 6. The comparison of our method with Zhu's via same v-HOG features on
INRIA test set.

We evaluate our algorithm via the challenging the INRIA test
set of 288 images [8] and the SDL test set of 140 images [24]. In
the INRIA test set, pedestrians are mostly in standing posture,
while it covers more diverse body poses and cluttered back-
grounds. In the SDL test set, pedestrians are almost situated in
multi-view appearance and crowded environment. Furthermore,
some images including some pedestrians from lateral views are
collected. Although the chosen training positives are mostly from
front view, the trained model benefited from sparseness can
handle some multi-views and occlusion cases, demonstrated by
the experiments.

5.1. Parameter analysis

To deal with the variability of appearance, illumination con-
ditions and background, the normalization of both the feature
vectors and the normal vectors of weak classifiers are carried out.
The feature vector of each block and the normal vector are

02 : : T :

1 : : : —4=HOG-S\M
=h=1-HOG~-CAdaboost
== COV+Logboost
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Fig. 7. The comparison of our method with the state of arts on INRIA test set.
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Fig. 8. The comparison of our method with HOG+SVM on SDL test set.

normalized, respectively, as follows:

(10

where x; denotes a feature block of the ith sample, and x;; is the jth
dimension component in the feature block of the ith sample. w;
denotes the normal vector of the kth weak classifier, and v\/,‘< is the
jth dimension component of the kth weak classifier. ¢ and ¢ are
small disturbance numbers (1.0 in our experiments).

There are several important parameters when learning the
weak classifiers. In Model I, when we determine the threshold of
an individual weak classifier, the penalty factors r; and r, have
important effects on the classification accuracy of positives and
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negatives. In Section 4.2.2, the penalty factors affecting the
threshold should be different. In general, r; of positives should
be larger than r, to guarantee that most of the positives remain
for the next level training. However, in regard of classification
accuracy of negatives, we cannot increase r; too much. It is
appropriate to set the ratio of ry/r; a value among [1,40]. In
Fig. 3, we illustrate the influence of the ratio on the positive and
negative classification accuracy in the first cascade level.

|

5.2. Evaluation and comparison

In Fig. 4, we present the results of the cascade classifier. It can
be seen that 6 cascades are enough to reject 95% of the negatives.
As we discussed in Section 4.5, the computational time of LML
weak classifier is less than Dalal’s [8] and Zhu’s [9]. The proposed
method is faster than the Linear-SVM and Kernel-SVM during the
detection. The SVM employs the inner-product of the test sample

Fig. 9. Detection examples. Detected false positives are marked with white rectangle of dash line, and missed positives are marked with black rectangle of dash line.
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and the support vectors. Instead, our weak classifier only projects
the test sample on the normal vector at a low computation cost to
classify objects. It should be noted that the cascade scheme of
CLML method can also perform efficiently. Therefore, our classi-
fier is much faster than a SVM classifier.

We can get the most compact feature blocks by our method.
Fig. 5(a) shows the best four blocks which are different from [9],
in which blocks in the 36 x 80 pixels size are considered the best.
However, in the first level, our best block size is 40 x 40 pixels in
the leg parts of human body. In the second level, our best block
size is 36 x 80 pixels covering the contour of human body. The
difference between our blocks and the blocks selected by Zhu's
method is mainly due to the different learning methods. Our
method adopts L1-norm which emphasizes more on the differ-
ence among features.

We compare our classifier with [9] on the INRIA human test
set using miss rate tradeoff False Positives Per Window (FPPW) on
a log scale in Fig. 6. Points on curves in Fig. 6 are obtained from
different cascade levels. Miss rate and False Positives Per Window
(FPPW) are defined as follows:

#Missed positive detections
#Total positives
#False positive detections
#Total image windows

MissRate =

FPPW =

Although the same v-HOG features are extracted as pedestrian
representation by the two compared methods, the way of feature
selection and classifier construction is different. Zhu’s method utilizes
SVM to build weak classifiers and uses Adaboost method to construct
a strong classifier. Our method proposes LML principle and uses
integer programming to make a classification. From Fig. 6, it can be
seen that the proposed classifier performs better than Zhu's method.

We compare our method with the state-of-the-art methods on
the INRIA test set, including HOG+SVM method [8],
v-HOG +CAdaboost [9] and the COV+Logitboost method [10],
which is shown in Fig. 7 on a log scale. We implement the method
[8] by the open source codes of HOG and LibSVM and the results
accord with their reports. The curves of the methods [9,10] are
obtained from their reported results. As shown in Fig. 7, our
method reaches a much better performance than the HOG-based
results on the INRIA dataset. Comparing with others at the FPPW
rate of 10~°, our method achieves 9% miss rate, which is about 8%
lower than the HOG+SVM method, about 3% lower than Zhu's
and about 1% lower than Tuzel’ method which use different
pedestrian representations (COV features) from ours.

In addition, we compare our method and the HOG+SVM
method [8] on the SDL test set to validate robustness of our
method to view variations, which is shown in Fig. 8 on a log scale.
The SDL test set is also challenging owing to the view variation of
pedestrians. It is unreasonable and unfair to compare our method
against the above methods except the HOG+SVM on the SDL test
set because we cannot obtain the exact expression of codes and
the optimal parameters in other methods. As shown in Fig. 8, the
obvious difference between our method and HOG+SVM can also
embody the superior performance of our method on the SDL test
set. At the FPPW rate of 10~ %, our method achieves 4% miss rate,
which is about 7% lower than the HOG+SVM method.

In Fig. 9, we show some detection examples from multiple
detection scales on two test sets. In Fig. 9(d), all pedestrians are
detected, although they are overlooked. In Fig. 9(e) most of the
pedestrians except the rightmost person are correctly located
whether or not they are occluded or in multi-posture, since that
person is too close to the image boundary. The statue in the up-
left side of picture is detected, since it is very similar to a
pedestrian. In Fig. 9(f), the pedestrians are detected, and espe-
cially the pedestrian in black jacket occluded can be found

correctly. In Fig. 9(g), four children are correctly located although
they have posture variation and a child is missed. From
Fig. 9(h) to (k), all pedestrians are detected correctly in spite of
variations of posture and view. However, in Fig. 9(i), there is a
false positive window owing to the effects of trunks.

6. Conclusions

Pedestrian detection is a rapidly evolving topic in pattern
recognition and some state-of-the-art classification methods are
employed in this topic. In this paper, we propose a new learning
and classification method, which is superior to the state-of-the-
art ones for pedestrian detection. The method aims to select more
informative and compact features and simultaneously to con-
struct classifiers via solving L1-norm minimization and integer
programming optimization models. The method will pursue to a
smaller upper bound of test error and improve detection perfor-
mance. Considering the detection efficiency problem, a cascaded
mechanism is employed to construct the final classifier.

Features in each block selected by the L1-norm minimization
criterion emphasize the principle difference between positives
and negatives, which are sparse to some extent. The combination
of feature blocks in a cascade is performed by integer program-
ming, which can achieve the compact and sparse blocks for
pedestrian. Therefore, both features in each block and blocks
selected by our method are sparse, and are insensitive to view and
occlusion validated by experiments.

The concepts and techniques introduced in this paper include the
detailed construction principles of optimization models and analysis
of representation of pedestrian patterns, the L1-norm minimization
learning, the applications of integer programming and min-max
function model. Detailed experimental results are reported with
comparisons to several state-of-the-art methods, confirming that
the proposed method has superior performance and is robust to
view and occlusion problems in pedestrian detection.

At present, the proposed method is applied to pedestrian
detection. In the future, we will extend our method to other
objects e.g. vehicles, etc. and the multi-class object detection task.
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Appendix A

A.1. Integer program procedure

Input: cascade level, ¢, V, g ar 01, g2, PN, NN where
k=12....M.
Step 1: Initialization:

1.1 Rank all feature blocks according to their classification
error rates, and select the top hardest
01PN positives and g,NN negatives.

1.2 y;=1for these samples, and #;=0 for others.
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Step 2: If the Cascade level is lower than 6, add a constraint
SM_ . 2 <10 to Model IIL

Else gradually relax the
V, where V> 10.

Step 3: Loop to adjust the values of #; and form some branches.

3.1. Given #;, loop to solve the integer program and form a
combination of weak classifiers.

3.1.1. Select a weak classifier and assign its 4, to 1, and record
it as the used label.

Loop: i=1,2,... .

Label the misclassified
classifiers.

Choose complementary classifiers with ability to correctly
classify the misclassified samples as

possible as they can.

Check constraint and compare objective value

IFSV <V

If other constraints are met, record the objective value and

return to 3.1.1

Else record its label and return to 3.2.1

Else set Inf as the objective value, record its label and

return to 3.1

Search the possible combinations in this branch and continu-
ally compare lower bound, to decide whether cutting this sub
branch, and then return to 3.

Step 4: Search all of branches

If constraints are met, select the minimum objective value,
then output the combination of 4.

Else relax g4, g5, return to Step 1.

constraint as S M_ | i<

samples by previous selected

A.2. lllustrative XOR example

In this section, we describe the difference between Adaboost
and our method for a XOR problem. In a two-dimensional space,
there are four samples to be classified in Fig. 10, i.e.

x1=(+1,+1),y; =+1)
2=(-1-1)y,=+1)
K3=(1+1)y;=-1)
Ka=(+1,-1),ys=-1)

83(x) (%)

84(x) 82(x)

©, O,

Y

©,

Fig. 10. Instances arranged in XOR layout and its decision functions. The instances
with the same label have the same color.

For simplicity, suppose we have four weak classifiers (decision
functions):

1 if x+1>0 1 if x-1>0
s = { —1 otherwise sX= { —1 otherwise

1 if —x+1>0 1 if —x-1>0
8300 = { —1 otherwise 84X = { —1 otherwise

It can be seen that arbitrary two parallel functions will be the
optimal solution of this problem. Of course, if all functions will be
chosen, then the problem can also be solved. The Adaboost may
become unstable, owing to its randomness. It will pick a classifier
with minimal error from all functions in one iterative process.
Suppose g;(x) is chosen in the first iteration, then sample x, is
falsely classified. The weight of x4, becomes larger comparing with
the other three samples after the weights being normalized. At
this time, there are three classifiers with the same weights and
errors. According to randomness, if it chooses g,(x), then the error
constraints have been met and the optimal solution has obtained.
However, if it chooses gsz(x), unfortunately, it must select all
classifiers to assure the samples to be correctly classified. Instead,
our method globally selects the minimal number of functions to
construct the final strong classifier. It can choose two parallel
functions as the optimal solution from the global view. Therefore,
it can select the minimal number of features and reaches the
optimal solution.

References

[1] Christopher J.C. Burges, A tutorial on support vector machines for pattern
recognition, Data Mining and Knowledge Discovery 2 (2) (1998) 121-167.

[2] M. Collins, R.E. Schapire, Y. Singer, Logistic regression, AdaBoost and Bregman
distances, Machine Learning 48 (1-3) (2002) 253-285.

[3] D. Donoho, For most large underdetermined systems of linear equations the
minimal L1-norm near solution approximates the sparsest solution, Com-
munications on Pure and Applied Mathematics 59 (6) (2006) 797-829.

[4] K. Huang, SAviyente, sparse representation for signal classification, advances
in neural information processing systems, in: Proceedings of the Twentieth
Annual Conference on Neural Information Processing Systems, 2007.

[5] AY. Yang, ]. Wright, Y. Ma, S.S. Sastry, Robust face recognition via sparse
representation, IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 31 (2) (2009).

[6] Ying Wu, Ting Yu, A field model for human detection and tracking, IEEE
Transactions on Pattern Analysis and Machine Intelligence 28 (5) (2006)
753-765.

[7] P. Viola, M. Jones, Robust real-time object detection, International Journal of
Computer Vision 57 (2) (2001) 137-154.

[8] N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, vol. 1, 2005, pp. 886-893.

[9] Q. Zhuy, S. Avidan, M.C. Yeh, K.T. Cheng, Fast human detection using a cascade
of histograms of oriented gradients, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, vol. 2, 2006, pp. 1491-1498.

[10] O. Tuzel, F. Porikli, P. Meer, Human detection via classification on riemannian
manifolds, in: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2007, pp.1-8.

[11] Y. Mu, S. Yan, Y. Liu, T. Huang, B. Zhou, Discriminative local binary patterns
for human detection in personal album, in: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, vol. 23-28, 2008,
pp. 1-8.

[12] Xiaoyu Wang, Tony X. Han, Shuicheng Yan, An HOG-LBP human detector
with partial occlusion handling, in: Proceedings of the IEEE International
Conference on Computer Vision, Kyoto, 2009.

[13] B. Wu, R. Nevatia, Detection of multiple, partially occluded humans in a
single image by Bayesian combination of edgelet part detectors, in: Proceed-
ings of the IEEE International Conference on Computer Vision, 2005.

[14] L. Zhang, B. Wu, R. Nevatia, Detection and tracking of multiple humans with
extensive pose articulation, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2007.

[15] S. Ioffe, D.A. Forsyth., Probabilistic methods for finding people, International
Journal of Computer Vision 43 (1) (2001) 45-68.

[16] B. Leibe, E. Seemann, B. Schiele, Pedestrian detection in crowded scenes, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, vol. 1, 2005, pp. 878-885.

[17] D. Vinay, J. Neumann, V. Ramesh, L.S. Davis, Bilattice-based logical reasoning
for human detection, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2007.



R. Xu et al. / Pattern Recognition 45 (2012) 2573-2583 2583

[18] A. Mohan, C. Papageorgiou, T. Poggio, Example-based object detection in
images by components, IEEE Transactions on Pattern Analysis and Machine
Intelligence 23 (4) (2001) 349-360.

[19] Ran Xu, Baochang Zhang, Qixiang Ye, Jianbin Jiao, Human detection in images
via L1-norm minimization learning, in: IEEE International Conference on
Acoustics, Speech and Signal Processing, 2010, pp. 3566-3569.

[20] S. Munder, D. Gavrila., An experimental study on classification, IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 28 (11) (2006)
1863-1868.

[21] Michael Juger, Denis Naddef, Computational Combinatorial Optimization:
Optimal or Provably Near-Optimal Solutions, Springer Press, 2001.

[22] A.T. Mario, D. Nowak, J. Wright, Gradient projection for sparse reconstruc-
tion: application to compressed sensing and other inverse problems, IEEE
Selected Topics in Signal Processing 1 (4) (2007) 586-597.

[23] Zhi-Hua Zhou, Jianxin Wu, W. Tang, Ensembling neural networks: many
could be better than all, Artificial Intelligence 137 (1-2) (2002) 239-263.

[24] <http://coe.gucas.ac.cn/SDL-HomePage/resource.asp ».

[25] Ran Xu, Baochang Zhang, Qixiang Ye, Jianbin Jiao, Cascaded L1-norm mini-
mization learning (CLML) classifier for human detection, in: Proceedings of
the IEEE Confernce on Computer Vision and Pattern Recognition, 2010.

[26] S. Munder, C. Schnotr, D.M. Gavrila, Pedestrian detection and tracking using a
mixture of view-based shape-texture models, IEEE Transactions on Intelli-
gent Transportation Systems 9 (2) (2008) 333-343.

[27] C. Papageorgiou, T. Poggio, A trainable system for object detection, Interna-
tional Journal of Computer Vision 38 (2000) 15-33.

[28] H. Shimizu, T. Poggio, Direction estimation of pedestrian from multiple still
images, Proceedings of the IEEE Intelligent Vehicles Symposium (2004)
596-600.

[29] J. Alvarez, Th. Gevers, A. Lopez, Learning photometric invariance for object
detection, International Journal of Computer Vision 90 (1) (2010) 45-61.

[30] S. Maji, A. Berg, ]J. Malik, Classification using intersection kernel SVMs is
efficient, in: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2008.

[31] M. Szarvas, A. Yoshizawa, M. Yamamoto, ]. Ogata, Pedestrian detection with
convolutional neural networks, Proceedings of the IEEE Intelligent Vehicles
Symposium (2005) 223-228.

[32] B.E. Goldstein, Sensation and Perception, sixth ed., Wadsworth, 2002.

[33] William Robson Schwartz, Aniruddha Kembhavi, David Harwood, Larry S.
Davis, Human detection using partial least squares analysis, in: Proceedings
of the IEEE International Conference on Computer Vision, 2009.

[34] Z. Lin, L. Davis, D. Doermann, D. DeMenthon, Hierarchical part-template
matching for pedestrian detection and segmentation, in: Proceedings of the
IEEE Internationall Conference on Computer Vision, 2007.

[35] P. Viola, M. Jones, D. Snow, Detecting pedestrians using patterns of motion
and appearance, International Journal of Computer Vision 63 (2) (2005)
153-161.

[36] S. Maji, A.C. Berg, Max-margin additive classifiers for detection, in: Proceed-
ings of the IEEE International Conference on Computer Vision, 2009.

[37] Paul S. Bradley, O.L. Mangasarian, Feature selection via concave minimization
and support vector machines, in: Proceedings of Fifteenth International
Conference on Machine Learning, 1998.

[38] J. Zhu, S. Rosset, T. Hastie, R. Tibshirani, 1-Norm support vector machines,
Advances in Neural Information Processing Systems (2003) 49-56.

[39] O.L. Mangasarian, Exact 1-norm support vector machines via unconstrained
convex differentiable minimization, Journal of Machine Learning Research 7
(2006) 1517-1530.

[40] D.J. Wu, ].B. Bi, K. Boyer, A min-max framework of cascaded classifier with
multiple instance learning for computer aided diagnosis, in: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2009,
pp. 1359-1366.

[41] P.F. Felzenszwalb, D.P. Huttenlocher, Pictorial structures for object recogni-
tion, International Journal of Computer Vision 61 (1) (2005) 55-79.

[42] M. Andriluka, S. Roth, B. Schiele, Pictorial structures revisited: people
detection and articulated pose estimation, in: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2009, pp. 1014-
1021.

[43] P.F. Felzenszwalb, R.B. Girshick, D. McAllester, D. Ramanan, Object detection
with discriminatively trained part-based models, IEEE Transactions on
Pattern Analysis and Machine Intelligence 32 (9) (2009) 1627-1645.

[44] Tyler Neylon, Sparse Solutions for Linear Prediction Problems, Dissertation,
2006.

Ran Xu received her B.S. degree in information and computer science from Wuhan University in 2006. From 2006 to 2008, her major was the applied mathematics in the
Graduate University of Chinese Academy of Sciences. From 2006 to 2011, she was a candidate Ph.D. of computer science, in the Graduate University of Chinese Academy of
Sciences. Her research interests include image processing, pattern recognition and object detection, etc.

Jianbin Jiao received the B.S., M.S. and Ph.D. degrees in mechanical and electronic engineering from Harbin Institute of Technology of China (HIT), Harbin, in 1989, 1992
and 1995, respectively. From 1997 to 2005, he was an associate professor of HIT. Since 2006, he has been a professor of the Graduate University of Chinese Academy of
Sciences, Beijing. His research interests include image processing, pattern recognition, and intelligent surveillance, etc.

Baochang Zhang received the B.S., M.S. and Ph.D. degrees in computer science from the Harbin Institute of Technology, China, in 1999, 2001 and 2006, respectively. From
2006 to 2008, he was a Research Fellow with the Chinese University of Hong Kong and Griffith University, Australia. Currently, he is a lecturer at Beihang University, China.
His research interests include pattern recognition, machine learning, face recognition, and wavelets.

Qixiang Ye received his B.S. and M.S. degrees in mechanical and electronic engineering from Harbin Institute of Technology of China (HIT), Harbin, in 1999 and in 2001,
respectively. He received his Ph.D. degree from the Institute of Computing Technology, Chinese Academy of Sciences in 2006. Since 2009, he has been an associate
professor at the Graduate University of the Chinese Academy of Sciences, Beijing. His research interests include image processing, pattern recognition, and statistic
learning, etc.


<ce:monospace>http://coe.gucas.ac.cn/SDL-HomePage/resource.asp</ce:monospace>

	Pedestrian detection in images via cascaded L1-norm minimization learning method
	Introduction
	Related work
	Pedestrian representation
	The proposed learning method
	L1-norm minimization learning framework
	Weak classifier construction
	Learning the normal vector of a weak classifier
	Threshold determination

	Strong classifier construction
	Training the CLML classifier
	Discussion

	Experiments
	Parameter analysis
	Evaluation and comparison

	Conclusions
	Conflict of interest
	Acknowledgment
	Appendix A
	Integer program procedure
	Illustrative XOR example

	References




