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A B S T R A C T

A central issue in rumor surveillance and management is decoding the complex dynamics of rumor propagation,
with an emphasis on predicting diffusion cascades. Recent studies focus on node embedding or the sequence of
dissemination in a rumor cascade based on user social interaction, while neglecting interactions between users
and rumors, as well as between various rumors. Online rumor diffusion is a complex system that encompasses
two fundamental components: rumors and users. A comprehensive understanding of this system’s dynamics
requires a global perspective. Consequently, it is necessary to develop models that capture the inherent
multimodal interactions in rumor propagation. To tackle this challenge, we propose an HG2RLink framework
of rumor diffusion prediction, which unifies multimodal interactions by global encoding. Specifically, our
methodology begins with the establishment of a hypergraph structure. We then refine these interactions by
leveraging a hypergraph neural network that aggregates users’ preferences for rumors. Two high-order graphs
are generated to capture latent spatial interactions of rumors. By employing a learning approach for multimodal
interactions, each rumor diffusion sequence is modeled with a long-range vision field of users in a deep neural
network. Moreover, to validate the effectiveness of our method, we introduce a new dataset available for
further exploration of new methods. Finally, experimental results show that HG2RLink outperforms other
methods with improvements ranging from 0.8% to 7.6% for the Hits@k metric and from 0.4% to 2.6% for
the MAP@k metric across four diverse datasets.
1. Introduction

Rumors often refer to information whose truth and source are unre-
liable [1]. With the deep integration of social network services(SNS)
into people’s lives, massive rumors are spreading in the SNS. Some
spread deeper, faster, and more permeable than real news [2]. Given
the constraints of personal expertise and knowledge, it is difficult to
find the veracity of information from the plethora of online content for
those not privy to the truth. In recent years, the frequent occurrences of
online rumors, often cause trust damage [3], public panic, social chaos,
and economic volatility, and even exacerbate the impact of disasters.
Consequently, the timely and precise forecasting of rumor cascades
holds profound importance for emergency management authorities.
Such predictions are instrumental in enhancing their comprehension
of the rumor diffusion process, enabling the implementation of strate-
gic interventions and guidance, thereby safeguarding and sustaining
societal stability.
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Modeling the rumor cascade usually involves the critical step of
link prediction. Depending on the formulation of the problem in dif-
ferent applications, link prediction involves identifying missing links
or forecasting potential future links [4]. Previous works on identifying
missing links have predominantly relied on heuristic approaches, where
the likelihood of link existence is determined by calculating similarity
scores between nodes. Lin et al. [5] defined similarity based on the
basic attributes of nodes, but these attributes are often concealed. Some
research used the similarity [6–9] of network structure to measure the
links among users. These methods excessively rely on the topological
structure of the relationship network, thus they cannot predict well
for datasets with missing relationships or incomplete relationship data.
In addition to identifying missing links, it is also crucial to forecast
the potential link for future propagation. The work in this field can
be mainly divided into two methods: feature engineering-based and
representation learning-based. Several studies [10–12] have extracted
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 data mining, AI training, and similar technologies. 
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Fig. 1. A simple example of the multimodal interactions in online rumor diffusion.

cascade features from various perspectives to describe the information
diffusion process. However, the cost of manual feature extraction is ex-
pensive. More importantly, these features designed in advance are not
scalable, which will lead to poor model generalizability. In recent years,
some techniques based on representation learning [13–15] are used for
potential link prediction to obtain node embeddings for alleviating the
burden of manual feature design. With the advancement of deep neural
networks (DNN), several studies [16–20] commonly explored deep
neural networks to study the spread of rumors cascade to predict links.
Although the existing architectures of deep neural network models
could well merge multiple representations of users in the network
graphs, most of them only focused on users’ social interaction. This
limited scope overlooks the broader, multimodal interactions that occur
across the network.

However, the interaction structure could be much more complicated
in real-world scenarios. Numerous online rumors are spreading in the
SNS simultaneously. We noticed that there are multimodal interactions
between rumors and users throughout the rumor dissemination process,
including various types of many-to-many relationships. For instance, a
single rumor cascade can involve a multitude of users, and an individ-
ual user may contribute to the spread of different rumors. In addition,
the impact of the interaction between rumors and users is of utmost
importance. Given that users exhibit diverse preferences for rumors,
the attractiveness of rumors to individuals naturally fluctuates [21].
When users encounter rumors that align with their interests, poten-
tial connections may be generated between individuals and rumors.
Additionally, there exists a degree of similarity among rumors, suggest-
ing that different rumors can engender potential spatial interactions.
Previous studies focused primarily on the social relationships of users,
neglecting the direct interactions between rumors and users, as well
as the subtle interactions between rumors themselves. In this case, the
traditional graph structure has trouble reflecting many relationships
among users bringing about rumor diffusion. Consequently, it is crucial
to adopt a multimodal modeling approach from a global perspective
to effectively capture and analyze the complex dynamics of rumor
diffusion. This comprehensive method will enable a more accurate
understanding of how rumors spread and influence user behavior. This
is also the primary motivation of our research.

Based on the above motivation, our research is driven by three
key objectives to enhance the early detection and monitoring of rumor
diffusion: (1) Our foremost goal is to develop a predictive framework
that is not only more accurate and dependable but also robust enough
to offer substantial support for the management and regulation of
online rumors. (2) We are committed to enhancing the scalability and
2 
generalization of our framework by exploring and using deep learning
techniques without relying on manual feature extraction. (3) Most im-
portantly, we aim to demonstrate that the integration of comprehensive
global information can significantly enhance the prediction of rumor
diffusion by modeling the multimodal interactions between users and
rumors.

Therefore, we introduce a hypergraph structure to construct mul-
timodal interactions in online rumor diffusion. These complex inter-
actions, as shown in Fig. 1, include user social interactions, rumor
latent spatial interactions, and rumor cascades. User social interac-
tion represents the follower relationship between users. Rumor latent
interaction represents a similar relationship between rumors. Rumor
cascades represent the users’ forwarding behaviors, which is essen-
tially the interaction between the user and the rumor. Based on the
hypergraph, we propose an HG2RLink (hypergraph to rumor link)
framework to address the challenge of online rumor link prediction.
This innovative framework not only integrates user preferences into
a hypergraph neural network (HGNN) [22] to learn user interactions
but also captures low-dimensional embedding of rumor interactions by
constructing two different higher-order graphs of rumors based on the
similarity of users and structures of rumor cascades. To capture the
comprehensive information of interactions, we merge the embeddings
of users and rumors with global attention based on the hypergraph.
Then we encode the diffusion sequence of each rumor cascade and
develop a DNN with multi-head attention to solve the rumor link pre-
diction. To validate the proposed framework, four real public datasets
were utilized. In conclusion, the main contributions of this study are as
follows:

• Global coding of interactions.We propose an HG2R-Link frame-
work aggregating users’ preferences for rumor diffusion predic-
tion which unifies multimodal interactions by global encoding.

• A new dataset. We build a de-identified and available dataset
that fills a gap in public datasets of social relationship networks
for nearly a decade.

• Better performance. The results of the experiment demonstrate
that HG2RLink has higher generalization in addition to being
more efficient.

2. Related work

Our study in this paper deals with the link prediction of rumor
cascades. In this section, we will review two aspects: missing link
prediction and potential link prediction.

2.1. Missing link prediction

The prediction of missing links aims to estimate the likelihood
of the existence of a link between two nodes based on observed
links [23]. Liben-Nowell and Kleinberg [24] developed a link prediction
method that relied on node proximity, which has garnered signifi-
cant attention from researchers. Subsequent studies have attempted to
estimate similarity between users by considering user attributes [25–
27] and behaviors [28–30]. For instance, Jiang et al. [25] utilized a
topic domain dictionary to construct a weakly supervised matrix for
social text, and defined similarity through comparison with a reference
matrix, and Leung et al. [28] utilize big data technology to analyze
massive historical behavioral data and identify the most similar nodes.
However, these methods often require dealing with large amounts of
textual information, which may not always be available. As a result,
current research has primarily focused on analyzing network struc-
ture [31–34] to address this limitation. De et al. [33] proposed a
stacked two-level learning framework that integrates local link, and
community-level link density. Coskun et al. [32] introduced a novel
approach that leverages the global network topology structure to en-
hance prediction accuracy. Butun et al. [31] addressed the significance
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of link direction in directed networks and proposed a direction-pattern-
based approach. Singh et al. [9] employed a community detection
algorithm [35] in a multiple network based on diverse relationships
to ascertain the relevance of nodes, thereby computing the likelihood
scores of non-existing. Recently, the work on missing link predic-
tion extended to knowledge graph domains, where strategies [36,37]
primarily involve learning low-dimensional embeddings. Additionally,
some scholars [38] posit that many facts in knowledge graphs may
change over time and have provided detailed summaries.

Those studies primarily focus on completing relationships within
graphs. However, they lack modeling for the diffusion graphs of dy-
namically changing information cascades, making them unsuitable for
predicting rumor propagation.

2.2. Potential link prediction

The prediction of potential links aims to forecast the cascade propa-
gation process by offering insights into the early stages of cascades [23].
Cheng et al. [11]. investigated the patterns of cascade propagation from
the perspectives of temporal and structural characteristics, demon-
strating their efficacy in understanding information diffusion. Weng
et al. [10] defined three sets of features, namely the influence of early
adopters, community concentration, and time series, and provided
evidence supporting the effectiveness of community-based structural
features. However, these methods require laborious manual feature en-
gineering, which is both time-consuming and prone to errors. Recently,
several research started to utilize deep learning to build up link predic-
tion frameworks from end to end without underlying explicit diffusion
models. An RNN-based model called DeepCas [39] could automatically
learn the representation of cascade graphs. DeepCon+Str [40] was a
recently proposed semi-supervised model for building proximity-based
cascade graphs’ content and structure in order to understand how they
are represented. TopoLSTM [41] produced a topology-aware embed-
ding for each node in the diffusion prediction by including topological
features in the conventional LSTM model. FOREST [42] was a reinforce-
ment learning framework that enabled a microscopic cascade model
for macroscopic diffusion prediction. CasCN [43] used a self-excitation
mechanism and temporal decay mechanism to extract the topological
structure of the diffusion processes. To model the preferences of users at
different periods, DyHGCN [19] embedded temporal information into
the heterogeneous graph and combined the structural feature of social
networks and information dissemination graphs. NDM [44] made re-
laxed assumptions and applied the convolutional network and attention
technique to the cascade prediction. HyperINF [18] used the HGNN
to tackle diffusion prediction with the dynamics of user interest. MS-
HGAT [45] designed modules for self-attention and memory-enhanced
look-up to emphasize the interactions within the cascade and improve
prediction accuracy. DisenIDP [46] captures user potential intentions
from different angles and uses an attention-based encoder to extract
long-term and short-term cascade influence, thus better meeting real
scenarios. MIDPMS [47] models the diffusion process as a substitu-
tion system, exploring the competitive and cooperative relationships
between information, the attractiveness of information to users, and
the potential impact of content expectations on further diffusion.

In general, most of the current works on rumor diffusion with deep
learning methods focused on learning how to depict social relation
graphs and dynamic diffusion graphs, ignoring the role of rumors
and the global relationship between rumors and users. Therefore, we
are inspired to explore the multimodal and higher-order relationships
among rumors and users.

3. Problem definition

For online rumor diffusions, both users and rumors are two essential
elements that should coexist in the propagation system. It is their
combined effect that drives the rapid spread of rumors. Therefore, let
3 
Fig. 2. Rumor cascades and link prediction task.

𝐻 = (𝑉 ,𝑋,𝑊 ) denote the hypergraph composed of rumors and users,
here V represents the set of users and X is a set of hyperedges,
𝑖 ∈ 𝑋 is the set of users involved in different rumors 𝑟𝑖. In practice,
ach rumor 𝑟𝑖 corresponds to a hyperedge 𝑒𝑖. W denotes the weights

(for a detailed construction and explanation, see Section 4.1). For
user forwarding behavior, the set of rumor diffusion sequences 𝐿 =
{(𝑟, 𝑢, 𝑡)|𝑢 ∈ 𝑉 , 𝑟 ∈ 𝑅} is recorded, where (r, u, t) means that user u
published or reposted rumors r at time t. Here, use Fig. 1 as a simple
example of rumor diffusion. It can be seen that user 𝑢4 and 𝑢1 publish
or repost rumor 𝑟1, user 𝑢2 and 𝑢4 take action with rumor 𝑟2, and user
𝑢2, 𝑢3, 𝑢5 participate in rumor 𝑟3. As a result, the spread of each rumor
has formed a rumor cascade between several users. It can be denoted
as a sub-sequence 𝑙𝑟 =

{

(𝑢𝑚, 𝑡𝑛),… , (𝑢𝑚+𝑗−1, 𝑡𝑛+𝑗−1), (𝑢𝑚+𝑗 , 𝑡𝑛+𝑗 )|𝑟 ∈ 𝑅
}

, as
shown in Fig. 2.

Thus, the issue we want to resolve is to predict the following
user 𝑢𝑚+𝑗 at the time 𝑡𝑛+𝑗 in the rumor diffusion sequence 𝑙𝑟. There-
fore, the rumor link prediction problem can be described as 𝑢𝑚+𝑗 =
𝑎𝑟𝑔𝑚𝑎𝑥𝑢∈𝑉 ,𝑟∈𝑅𝑃 (𝑢 ∣ 𝑙𝑟,𝐻,𝐿).

4. Method

In this section, we will introduce the HG2Rlink, and its overall
framework is shown in Fig. 3. Firstly, we differentiate our approach
from previous studies, which focused primarily on social interaction
between users, by recognizing the propagation of rumors as a sys-
tem. Within this holistic system, there exist intricate interactions be-
tween users and rumors. Therefore, we addressed this by adopting
hypergraph-based modeling to effectively capture these multimodal
relationships within the system. Especially, we build a hypergraph of
rumor interaction to reflect the higher-order relationships between ru-
mors and users to understand the intricate interactions in the diffusion
of rumors online. To reduce the dependence on empirical data, we
use users’ individual preferences for rumors and social relation graphs
and the hypergraph as inputs of the model. Then, in this framework,
there are three modules: dual-channel representation learning, global
interactions encoding, and rumor diffusion prediction. Specifically, the
dual channel representation learning module includes user interaction
representation learning and rumor interaction representation learning.
On the user side, an HGNN layer is constructed to capture the hidden
features of users under three inputs. On the rumor side, the rumors
are represented in vector space with few dimensions by the graph
embedding layer for generated rumor high-order graphs. In the global
interaction encoding module, we use the multi-head graph attention
network (GAT) [48] to integrate the multimodal interactions between
users and rumors through a global perspective, exploring the dependent
relations among the users and the rumors. By combining hypergraph
and GAT technology, we can integrate multimodal interaction and en-
code high-order correlations, thus better extracting representations of
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Fig. 3. The overall framework of the proposed HG2RLink. U and 𝐔′′ represent user embeddings through different layers, and R represents rumors’ embeddings. Triangles represent
rumors and the circled letters represent users. The black dashed arrow indicates the order of rumor propagation.
the rumor propagation system. Finally, each rumor diffusion sequence
is represented in the link prediction module. Then a classification
function is learned using a multi-head attention DNN to forecast the
likelihood of user participation in rumor spreading.

4.1. Modeling the rumor interaction hypergraph

Since the traditional graph structure has trouble reflecting the mul-
timodal relationships of data, hypergraphs are introduced here. A
generalized graph structure consisting of a collection of nodes and hy-
peredges is named a hypergraph. A hyperedge in a hypergraph can link
any number of nodes, unlike an edge in a conventional graph, which
only connects two nodes. Formally, a hypergraph can be represented as
𝐻 = (𝑉 ,𝑋,𝑊 ), where V is a set of elements representing nodes, X is a
set of hyperedges, 𝑒𝑖 ∈ 𝑋 is a nonempty subset of V, and W represents a
positive weight assigned to each hyperedge 𝑒𝑖. Obviously, hypergraphs
have more advantages in modeling multimodal interactions. In our
research, to retain the high-order information as much as possible, the
hypergraph is used to model the complex interactions in the spread
of online rumors. An online rumor is treated as a hyperedge. Each
hyperedge contains several nodes representing all users who spread the
rumor. Thus, the connection of rumor interaction between nodes and
hyperedges is denoted by 𝐻 ∈ 𝑅|𝑉 |×|𝑋|. It should be noted that this
work does not distinguish the importance and influence of different
rumors, so the weight of each hyperedge is set as 1. Here, take the
data in Fig. 1 as an instance to describe the procedure of constructing
a rumor interaction hypergraph 𝐻 = (𝑉 ,𝑋). As shown in Fig. 4,
we first find the user set participated in each rumor from Fig. 1, as
shown in Fig. 4(a). Then use the three rumors as a set of hyperedges
𝑋 =

{

𝑒1, 𝑒2, 𝑒3
}

=
{(

𝑢1, 𝑢4
)

,
(

𝑢2, 𝑢4
)

,
(

𝑢2, 𝑢3, 𝑢5
)}

, and take all users
participated in these rumors as the node set 𝑉 =

{

𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5
}

. In
Fig. 4(b), curves with different colors represent the three hyperedges
in the rumor interaction hypergraph.
4 
Fig. 4. Rumor interaction hypergraph construction.

4.2. Dual-channel representation learning

Based on the interactive hypergraph of rumors, we perform local
interaction encoding and representation learning with the two modules
of user interactions and rumors interactions.

4.2.1. Users’ interactions representation learning
User behavior plays a crucial role in the spread of online rumors,

and user behavior is often influenced by users themselves, their social
relationships, and the rumors. According to the constructed rumor
interaction hypergraph, we discover that the implicit information in
the hypergraph could enhance the understanding of user behaviors.
There fore, based on the rumor interaction hypergraph 𝐻 = (𝑉 ,𝑋) and
the user social interaction graph 𝐺 = (𝑉 ,𝐸), we learn the embedding
of nodes in these graphs through graph representation learning. For
being different from the traditional graph with pairwise connections,
hypergraph is unsuitable for general learning graph representations. It
needs to encode the high-order relations. Inspired by Feng et al. [22],
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we attempt an HGNN module to update the hidden feature of the user in
hypergraph with the users’ embedding learned from the social relation
graphs. This layer can aggregate the features of related hyperedges in
the rumor interaction hypergraph to get new representing vectors of
the users. In the meantime, it is crucial to simulate the aforementioned
user preferences. Therefore, we extract the user preferences of different
rumors to integrate into the HGNN (as shown in the input of Fig. 3).

First, we use the Deepwalk algorithm [49] to get the embeddings
of nodes in graph 𝐺 = (𝑉 ,𝐸), denoted as u. Then, from hypergraph
𝐻 = (𝑉 ,𝑋), we extract the incidence matrix 𝐇 ∈ 𝑅|𝑉 |×|𝑋|, where rows
epresent different nodes, columns represent different hyperedges, and
he values are represented by Eq. (1).

(𝑣, 𝑒) =

{

1, 𝑖𝑓 𝑣 ∈ 𝑒
0, 𝑖𝑓 𝑣 ∉ 𝑒

(1)

For each vertex 𝑣 ∈ 𝑉 , its degree is defined as 𝐷(𝑣) =
∑

𝑒∈𝑋 ℎ(𝑣, 𝑒).
For each hyperedge 𝑒 ∈ 𝑋, its degree is defined as 𝐷(𝑒) =

∑

𝑣∈𝑉 ℎ(𝑣, 𝑒).
The number of nodes that make up each hyperedge determines its
degree. 𝐃𝑣 and 𝐃𝑒 represent the diagonal matrices of edge degree and
vertex degree, respectively. Meanwhile, users’ rumor preference matrix
P is constructed by extracting the frequency of users’ participation from
the rumor diffusion sequences 𝐿. To consider how user preferences
affect rumor diffusion, we construct a weighted incidence matrix 𝐇′

by adding the preference matrix P to the incidence matrix H of the
hypergraph 𝐻 = (𝑉 ,𝑋). Finally, according to the general HGNN model,
we build a hyperedge convolutional layer 𝑓 (𝑈,𝑊 ,𝛩) in the following
formulation.

𝐔(𝑙+1) = 𝜎(𝐃
− 1

2
𝑣 𝐇′𝑊𝐷

− 1
2

𝑣 𝐇′𝑇𝐃
− 1

2
𝑣 𝐔(𝑙)𝛩𝑙) (2)

In the above hyperedge convolutional layer, U represents the node
feature, 𝐔(𝑙+1) is the hypergraph’s signal at the 𝑙+1 layer, 𝐔(0) represents
the initial node feature u, W represents the weight matrix of the
hyperedge. In our work, the weights of hyperedges are all set to 1. 𝜎 is a
nonlinear activation function. 𝛩 is a learnable parameter matrix. With
this HGNN model, based on the spectral convolution on the hypergraph,
the user’s representation U is well-learned.

4.2.2. Rumors’ interactions representation learning
Rumor cascade can directly reflect the dynamics of rumor diffusion.

Thus, we generate a diffusion cascade graph for each rumor based on
the rumor interaction hypergraph. Given that user social relationships
play an important role in rumor propagation, we also introduce social
relationships from the rumor cascade graph. Through the analysis of
the rumor cascade graph, we find that the users in cascades and the
structure of cascade are two critical features of the rumors. In order to
obtain a low-dimensional representation of the rumor, we have defined
a new rumor high-order graph and constructed two forms of the high-
order graph based on the node similarity and structure similarity of the
rumor cascade graph.

Definition 1 (Rumor High-Order Graph).. Given a rumor interaction
hypergraph 𝐻 = (𝑉 ,𝑋) and a social interaction graph 𝐺 = (𝑉 ,𝐸),
extract a rumor cascade set 𝐶𝑅(𝐶𝑅

𝑖 ∈ 𝐶𝑅). We define the rumor high-
rder graph as 𝐺𝑅 = (𝑅,𝐿,𝑊 ). It encodes the proximity between rumor

cascades. 𝑅 is the set of corresponding rumors in the 𝐶𝑅, 𝐿 is the set of
links extracted similarity between rumor cascades, and 𝑊 is the weight
determined by similarity metrics.

(1) User similarity in rumor cascade graph

The user’s forwarding behavior can trigger a rumor cascade. It is
evident that the participation of different users can lead to dynamic
changes in the cascade, and the size of the cascade largely depends on
the influence of the users. Therefore, the similarity of users in the rumor
cascade is considered first to measure the implicit relationship be-
tween different rumors. We use the Jaccard coefficient [24] to measure
5 
the similarity of users between rumor cascades, as shown in Eq. (3).
𝑆𝑖𝑚𝑢(𝑐𝑅1 , 𝑐

𝑅
2 ) is a ratio of the number of users who jointly take part in

two rumor cascades to the total number of users participating in two
rumor cascades.

𝑆𝑖𝑚𝑢(𝑐𝑅1 , 𝑐
𝑅
2 ) =

|

|

𝑢𝑐1 ∩ 𝑢𝑐2||
|

|

𝑢𝑐1 ∪ 𝑢𝑐2||
(3)

where 𝑈𝑐1 and 𝑈𝑐2 represent the participating users in two cascades 𝑐𝑅1
nd 𝑐𝑅2 , respectively. If the similarity of users is more than 0, there is
n edge between the corresponding rumor in 𝐺𝑅

𝑢 = (𝑅,𝐿,𝑊 ), and the
eight of this link is the value of the user similarity. Fig. 5(a) shows

his method with a simple example.

(2) Structural similarity of rumor cascade graph

Rumor cascade graphs among users can be abstracted into a variety
of topologies, including a tree, star, and other diagrams. Different
topologies could cause different cascade trends. Therefore, we construct
the rumor high-order graph 𝐺𝑅

𝑠𝑡𝑟 = (𝑅,𝐿,𝑊 ) based on structural simi-
larity between rumor cascades to automatically learn the characteristics
of rumor diffusion’s structure.

Similar to the method of degree distribution of nodes in [40], we
apply Equation (4) to determine the structural similarity of the two
rumor cascades.

𝑆𝑖𝑚𝑠𝑡𝑟(𝑐𝑅1 , 𝑐
𝑅
2 ) = 𝑒−𝐷𝑖𝑠𝑡(𝑣1 ,𝑣2) (4)

where 𝑣1 and 𝑣2 are the root users of the rumor cascades 𝑐𝑅1 and
𝑅
2 . 𝐷𝑖𝑠𝑡(𝑣1, 𝑣2) is calculated by Eq. (5), and represents a sum of the
istances between users in a degree-order at all potential k distances
rom root users.

𝑖𝑠𝑡(𝑣1, 𝑣2) =
∑

𝑘=0∶𝐾 𝑙(𝑠(𝐷𝑘(𝑣1)), 𝑠(𝐷𝑘(𝑣2))) (5)

ere, 𝐷𝑘(𝑣) is the set of users with the distance (hop count) 𝑘(𝑘 > 0) to
ser 𝑣 in the 𝑐𝑅𝑖 . Then 𝐷0(𝑣) represents user 𝑣 itself, and 𝐷1(𝑣) contains
ll the neighbors of 𝑣. 𝑠(𝐷𝑘(𝑣)) denotes the ordered sequence of degrees
f 𝐷𝑘(𝑣), 𝐷𝑘(𝑣) ⊂ 𝑉 . Noting that the K should equal to the smaller of
wo distances 𝑘1 and 𝑘2 in Eq. (5), and 𝑘𝑖 is the maximum distance from
ll users of 𝑐𝑅𝑖 to the root user 𝑣𝑖. 𝑙(𝑠1, 𝑠2) measures the distance between
equences 𝑠1 and 𝑠2. Since 𝑠1 and 𝑠2 may be of different lengths, the
uclidean distance could not effectively calculate the distance between
hese two sequences. To solve this problem, we adopt the dynamic time
arping (DTW) algorithm [50], which is used to measure the similarity
f two-time series of different sizes. Therefore, after calculating the
alue of 𝑙(⋅) by DTW algorithm, the structural similarity 𝑆𝑖𝑚𝑠𝑡𝑟(𝑐𝑅1 , 𝑐

𝑅
2 )

etween cascades can be obtained. Fig. 5(b) illustrates this construction
rocess. Specifically, we get three cascades 𝑐𝑅1 , 𝑐𝑅2 and 𝑐𝑅3 from Fig. 1.
4, 𝑢2 and 𝑢2 are the root nodes of three cascades respectively. For 𝑐𝑅1 ,
0(𝑢2) = (𝑢2), 𝐷1(𝑢2) = (𝑢4) and 𝑠(𝐷0(𝑢4)) = (1), 𝑠(𝐷1(𝑢4)) = (0). For
𝑅
2 , 𝐷0(𝑢2) = (𝑢2), 𝐷1(𝑢2) = (𝑢4) and 𝑠(𝐷0(𝑢2)) = (1), 𝑠(𝐷1(𝑢2)) = (0).
or 𝑐𝑅3 , 𝐷0(𝑢2) = (𝑢2), 𝐷1(𝑢2) = (𝑢5), 𝐷2(𝑢2) = (𝑢3) and 𝑠(𝐷0(𝑢2)) = (1),
(𝐷1(𝑢2)) = (1), 𝑠(𝐷2(𝑢2)) = (0). Then by DTW algorithm, we get the
alue 𝐷𝑖𝑠𝑡(⋅). Finally, Eq. (4) is used to get the results. It should be
ointed out that in order to ensure that 𝐺𝑅

𝑠𝑡𝑟 = (𝑅,𝐿,𝑊 ) is not a fully
onnected graph, a link exists in 𝐺𝑅

𝑠𝑡𝑟 = (𝑅,𝐿,𝑊 ), only if the similarity
f the two cascades is not less than the average value of all structural
imilarities in our experiment.

Through the acquisition of the above two rumor high-order graphs,
e also use the Deepwalk algorithm to mine information on graph

tructure. But unlike the user social relationship graph in the user
hannel, the rumor high-order graphs are weighted graphs. Thus, we
esign a weighted Deepwalk algorithm to break through the limitation
f the original Deepwalk algorithm suited for unweighted graphs. We
esign a transition probability matrix 𝛷 constructed with weights in
𝑅 = (𝑅,𝐿,𝑊 ) as prior knowledge for random walks. Suppose in
𝑅 = (𝑅,𝐿,𝑊 ) the rumor node 𝑟0 has 𝑛 neighbors, and 𝑤0𝑖 is the weight
f each adjacent edge. Then, each value in 𝛷 is calculated by Eq. (6).

0𝑖 =
𝑤0𝑖

∑𝑛 (6)

𝑖=1 𝑤0𝑖
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Fig. 5. The generation of high-order rumor graphs and rumor representation learning.
In the process of sampling the node sequence using random walk,
neighbor nodes are selected with the transition probability of the seed
node, and the process is repeated before the preset length of the
sequence is reached. After sampling, the sequence is input into the
word2vec [51] model for training. After learning the representations
of two rumor high-order graphs respectively, the low-dimensional em-
beddings 𝐫𝑢, 𝐫𝑠𝑡𝑟 of the rumors are obtained. Both embeddings are
important, thus they are composed into the ultimate representation of
rumors 𝐑 = [𝐫𝑢 ∶ 𝐫𝑠𝑡𝑟], as shown in Fig. 5(c).

4.3. Global interaction encoding

We have separately learned about user representation and rumor
representation, but the relationship between the representations has
been ignored so far. In this section, we will study how to encode multi-
modal interactions in rumor diffusion prediction to further investigate
the global dependence between users and rumors.

We revisit the rumor interaction hypergraph with a global view. If
rumors are regarded as heterogeneous nodes on the corresponding hy-
peredges, there are two types of relations in Fig. 4(b): rumor-centered
relation (such as 𝑢3 − 𝑟3 − 𝑢5) and user-centered relation (such as
𝑟1 − 𝑢4 − 𝑟2). In order to capture the implicit relation in the rumor
interaction hypergraph, we utilize the GAT model by paying attention
to the rumor neighbors of users. However, two learned representations
of users and rumors are in different semantic spaces. Thus, we first need
to align two spaces for further processing, which can be formulated as

𝑢′𝑖 = 𝐖𝑢𝑢𝑖,

𝑟′𝑗 = 𝐖𝑟𝑟𝑗
(7)

where 𝐖𝑢 ∈ R(𝑑𝑢×𝑑) and 𝐖𝑢 ∈ R(𝑑𝑟×𝑑) are learned parameters.
To encode two relationships into the user representation, a masked-

attention mechanism is used here, which only considers the first-order
information of neighbors. In other words, each user has a weight of
attention regarding their rumor neighbors. The attention coefficient is
defined as follows

𝑎𝑖𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐿𝑒𝑎𝑘𝑅𝑒𝐿𝑈 (𝑎𝑇 [𝑢′𝑖 ; 𝑟
′
𝑗 ])) (8)

here, 𝑎 ∈ 𝑅2𝑑×1 is a learnable parameter, and in the LeakyReLU
function [52], the slope of the negative part of the axis is set to 0.2 to
ensure that all negative axis information is not lost. Then, a weighted
sum of the rumors’ features gives a new feature for each user in the
following formulation

𝑢′′𝑖 = 𝜎(
∑

𝑎𝑖𝑗𝐖𝑟′𝑗 ) (9)

𝑗∈𝑁(𝑢𝑖)

6 
here, 𝑗 ∈ 𝑁(𝑖) indicates the rumor neighbor of user 𝑖. The attention
mechanism is enhanced to a Multi-head Attention [53] in order to
obtain multiple representations from different relations and enhance
the model’s capacity for fitting. Specifically, 𝐾 independent attention
mechanisms (Eq. (9)) are executed, and their features are then com-
bined. Finally, the representation of the output feature that follows may
be produced as follows

𝑢′′𝑖 =
𝐾
∥

𝑘=1
𝜎(

∑

𝑗∈𝑢𝑖

𝑎𝑘𝑖𝑗𝐖
𝑘𝑟′𝑗 ) (10)

where ∥ represents concatenation operation, 𝑎𝑘𝑖𝑗 and 𝐖𝑘 are the results
obtained by executing the 𝑘th attention mechanism. More details are
shown in Algorithm 1. This algorithm takes a hypergraph and local
representations of users and rumors as inputs to generate a global latent
representation 𝐔′ of users.
Algorithm 1 Global relational coding algorithm
Input: 𝐻 = (𝑉 ,𝑋,𝑊 ); user id 𝑢𝑖; rumor id 𝑟𝑗 ; weight vector

W; Neighborhood function 𝑁(⋅); user representation U; Rumor
Representation R

Output: New user representation U′′

1: for each 𝑖 ∈ 𝑉 , 𝑗 ∈ 𝑋 do
2: for 𝑢𝑖 ∈ 𝑁(𝑟𝑗 ) do
3: Calculate 𝑢′𝑖 and 𝑟′𝑗 by Eq. (7)
4: Calculate 𝑎𝑖𝑗 by Eq. (8)
5: end for
6: Calculate 𝑢′′ by Eq. (10)
7: end for
8: return U′′

4.4. Rumor diffusion link prediction

For predicting the subsequent users who will generate interac-
tions in the rumor cascades, we apply the learned final user repre-
sentation 𝐔′′ to generate the diffusion sequence representation 𝐔𝐿 =
[𝑢′′𝑎 , 𝑢

′′
𝑏 , 𝑢

′′
𝑐 ,…] for each rumor.

To consider the internal dependency and correlation within the
rumor diffusion sequence, we utilize a multi-head attention mechanism,
which has better memory and could also acquire more information with
longer distances than other recurrent neural networks (RNNs). In order
to make each user in the sequence only focus on the users before them,
we construct a mask matrix M which is a triangular matrix. The entity
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of mask matrix M is denoted as

𝑖𝑗 =
{

0 𝑖 ≤ 𝑗
−∞ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(11)

To be specific, given the same set of queries 𝐐 ∈ R𝑑𝑘 , keys 𝐊 ∈ R𝑑𝑘 ,
and values 𝐕 ∈ R𝑑𝑣 , we first make linear projections h times to learn
he transformed values of 𝐐, 𝐊, 𝐕 independently. Then, put them
n the attention module in parallel. These outputs from the attention
odule are concatenated and transformed by another learnable linear
rojection. Finally, the results are put into a linear layer with residuals
o produce the final output, denoted by:

𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐔𝐿𝐖𝑄
𝑖 ,𝐔

𝐿𝐖𝐾
𝑖 ,𝐔

𝐿𝐖𝑉
𝑖 ),

𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐐,𝐊,𝐕) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐐𝐊𝑇
√

𝑑𝑘
+𝐌)𝐕,

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝐐,𝐊,𝐕) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ1, ℎ2,… , ℎℎ)𝐖𝑜,

𝑍 = ℎ + 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (ℎ,𝐖𝑍 )

(12)

Here, 𝐖𝑄
𝑖 ,𝐖

𝐾
𝑖 ∈ R𝑑×𝑑𝑘 , 𝐖𝑉

𝑖 ∈ R𝑑×𝑑𝑣 , 𝐖𝑜 ∈ Rℎ𝑑𝑣×𝑑 , 𝐖𝑍 ∈ R𝑑×𝑑 ,
𝐙 ∈ R𝐿×𝑑 , ℎ represents how many parallel attention layers there are.

The resulting representation is projected onto the desired space of
class probability using fully connected layers:

�̂� = 𝐖2𝑅𝑒𝐿𝑈 (𝐖1𝐙𝑇 + 𝑏1) + 𝑏2 (13)

where, �̂� = R𝐿×|𝑉 |, 𝐖1 ∈ R𝑑×𝑑 , 𝑊2 ∈ R|𝑉 |×𝑑 , 𝑏1 and 𝑏2 are learnable
parameters.

To optimize the model, we select the cross-entropy as the loss
function, which is obtained as

𝐽 (𝜃) = −
∑𝐿

𝑖=2
∑

|𝑉 |

𝑗=1 𝑦𝑖𝑗 𝑙𝑜𝑔(�̂�𝑖𝑗 ) (14)

where, 𝑦𝑖𝑗 = 1 means that the rumor was forwarded by the 𝑗th user at
the 𝑖th moment, otherwise it has not.

5. Experiment

5.1. Experimental objectives

Based on the results of these experiments, we want to assess the
following three experimental objectives in this section:

• Objective 1: Evaluation on overall performance. We aim to
compare the effectiveness and generalization of the HG2RLink
with other state-of-the-art methods.

• Objective 2: The rationality of parameter selection. We desire
to find out whether the multi-head attention parameter selection
is reasonable due to its optimal performance to the model.

• Objective 3: Ablation study. We use the ablation research to
evaluate the worth of the modules in our system.

5.2. Datasets

To fill a gap in the public datasets of online social networks for
nearly a decade and spark further interest in the exploration of new
methods, we introduce a new real-world dataset for predicting ru-
mor dissemination. We implement the evaluation experiments on our
new dataset as well as three public datasets, including Twitter [54],
Memetracker [55], and Douban [56].

The new dataset was collected from Weibo, which is the mainstream
Chinese social media platform. The data collection started at the end
of 2022 and continued until spring 2023. We randomly selected 10
seed users and obtained two layers of followees from each seed user
and their followees, totaling over 10,600 users and 29 million follow
relationships. Then we obtained the public attributes and posted mes-
sages of all users, as well as the diffusion sequences of messages (more
than 10 reposts), totaling 130,000 messages. Finally, we removed
identifiable personalized content from the data. In the experiment, we
7 
Table 1
Descriptive statistics of data.

Dataset #Nodes 2 #Edges #Cascades

Weibo 8538 74,699 1908
Twitter 10,236 257,706 2768
Memetracker 3353 1,818,096 3719
Douban 15,596 506,810 5499

randomly extracted 1908 diffusion sequences from the Weibo dataset
as rumor cascades. We further extracted corresponding users and their
following relationships from these diffusion sequences.

Twitter is a popular social media around the world. This dataset
was obtained using the Twitter API and includes over 3 million tweets,
social relationships, and user retweet behaviors over three weeks in the
autumn of 2010. From this dataset, we extracted several user retweet
behaviors as rumor cascades and social relationships as social graphs
for the experiment.

Memetracker is a website that tracks trends and creates maps of
the daily news cycle by examining several news articles and blog posts
each day. This dataset collected blogs and news articles from millions
of online news websites over a period of three months in April 2009.
In our experiment, each website URL is regarded as a node, and each
meme is treated as a diffusion sequence. Note that there is no social
relationship between two memes. Referring to previous work (Wang
et al. 2017), we adopted this method to generate edges and get more
than 2.7 million edges in the dataset.

Douban is a Chinese social media platform that allows users to share
their comments on books, music, and movies. This dataset contains
three different types of user behaviors. These different user behaviors
make up more than 750 million user social connections. We consider
these behavior data as participation in information dissemination.

We randomly sampled a portion of data from four datasets as our
experimental data. The precise statistics utilized in the experiment are
shown in Table 1. The sign # represents the number of nodes edges and
cascades. We randomly selected 80% of the cascades and corresponding
nodes and edges for training and 20% for testing.

5.3. Baselines

To assess the performance of HG2RLink, we select three cutting-
edge models as baselines, TopoLSTM [41], FOREST [44], DyHGCN
[19], MS-HGAT [45], DisenIDP [46], MIDPMS [57]. These models are
shown as follows:

TopoLSTM incorporates topological structures into the standard
LSTM model, and proposes a topological recurrent neural network to
extract features for diffusion prediction.

FOREST uses reinforcement learning to include the data on macro-
scopic diffusion in the RNN-based model of microscopic diffusion.

DyHGCN constructs a heterogeneous network with following and re-
posting interactions and simulates diffusion using an attention method.

MS-HGAT proposes an improved memory embedding lookup mod-
ule that enables the learning of user representations that emphasize the
features within the cascade.

DisenIDP introduces a self-supervised framework, which constructs
intent-aware hypergraphs and performs light hypergraph convolution
to adaptively activate disentangled intents, and extracts long-term and
short-term cascade influences.

MIDPMS integrates macroscopic popularity and microscopic diffu-
sion analysis, incorporating a minimal substitution neural network.

5.4. Evaluation metrics and parameter settings

Due to the large number of potential target nodes, predicting which
node will be the next activated node can be viewed as a retrieval
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Table 2
Experimental results on Weibo dataset (%).

Model Hits Maps

@10 @50 @100 @10 @50 @100

TopoLSTM 13.57 24.36 28.68 5.67 6.19 6.25
FOREST 15.73 22.98 26.37 9.67 10.03 10.08
DyHGCN 15.93 26.36 30.24 8.96 9.45 9.50
MS-HGAT 13.84 21.79 25.40 8.03 8.44 8.49
DisenIDP 15.27 21.71 28.15 8.31 8.64 9.19
MIDPMS 16.19 27.13 32.17 10.89 11.16 11.71

HG2RLink(ours) 24.25 33.46 36.09 13.40 13.89 13.93

Table 3
Experimental results on the Twitter dataset (%).

Model Hits Maps

@10 @50 @100 @10 @50 @100

TopoLSTM 16.35 32.67 34.54 13.32 13.66 13.68
FOREST 21.42 33.76 41.51 14.17 14.72 14.83
DyHGCN 23.96 37.75 45.68 15.40 16.03 16.14
MS-HGAT 31.97 48.70 58.85 20.24 21.01 21.15
DisenIDP 29.82 46.17 57.91 18.17 18.56 19.13
MIDPMS 33.48 49.37 59.40 24.26 24.99 25.11

HG2RLink(ours) 36.83 52.58 60.27 26.83 27.50 27.61

problem. The evaluation metrics we employ for the current diffusion
cascades are mean average precision (MAP) and hit ratio (Hits), with
Hits@k and MAP@k designating the top k predictions, respectively.
Hits@k is used to evaluate the accuracy of the top-k candidates pre-
dicted by the model. MAP@k is a mean measure that takes into account
both prediction accuracy and relative order. The higher value for the
two measures indicates that the analyzed model performed better, on
average. The 𝑘 are {10, 50, 100}.

Pytorch is used to implement all of the experiment’s code. Adam
ethod [58] is used to update the model’s parameters. The learning

ate is set to 1e−3, the training algorithm’s iterations are set to 50,
nd the training batch size is set to 32. The user and rumor embedding
imensions are both set to 128. Two-layer hypergraph convolution is
sed to learn the user embedding. The dimensions of convolutional ker-
el are set to {64, 128}. We use two layers of multi-head GAT to acquire
he global representation of users with rumor embedding. In a multi-
ead GAT module, the first layer has 8 heads, while the second layer
ontains 1 head. The dimensions of the two layers are set to {8, 128}.
n the link prediction module, we set the size to 128 and the number
f heads in multi-head attention to 8. The first fully connected layer’s
utput dimension is set to 128, and the second fully connected layer’s
utput dimension is the number of users. The output dimension is set
o 128 for the first fully connected layer and to the number of users
or the second layer. In different modules, we use different dropouts.
he settings of dropout are {0.3, 0.1, 0.5} in m ulti-head GAT, multi-head
ttention, and fully connected layer, respectively. Every experiment is
un on a computer with a Windows 64-bit system, Intel(R) Core(TM)
7-9700 Processor, CPU @3.00 GHz, and 32 GB memory size.

.5. Comparison results and performance analysis

.5.1. Evaluation on overall performance
Effectiveness analysis. On the four experimental data-sets, we

ssess how well the proposed HG2RLink and these baselines perform.
ables 2, 3, 4, and 5 provide the experimental findings. To ensure
he comparability of experimental results, we run all baselines on the
xtracted datasets instead of directly citing the data in their original
apers. It can be observed that there are discrepancies between the
erformance of these baselines on the extracted datasets and the results
eported in their original papers. Specifically, on the Memetracker

ataset, the performance of all models improved because we filtered t

8 
Table 4
Experimental results on the Memetracter dataset (%).

Model Hits Maps

@10 @50 @100 @10 @50 @100

TopoLSTM 39.24 61.83 70.41 22.17 22.93 23.04
FOREST 41.77 65.93 73.88 23.81 24.80 24.91
DyHGCN 45.97 67.10 75.37 23.56 24.59 24.71
MS-HGAT 41.12 67.61 78.16 21.72 23.02 23.15
DisenIDP 41.66 66.34 76.67 23.87 24.08 24.23
MIDPMS 46.72 69.90 79.67 24.45 24.71 25.43

HG2RLink(ours) 50.48 74.01 81.23 24.87 26.03 26.13

Table 5
Experimental results on the Douban dataset (%).

Model Hits Maps

@10 @50 @100 @10 @50 @100

TopoLSTM 8.13 15.18 21.16 4.81 5.03 5.32
FOREST 9.47 17.75 23.24 5.17 5.54 5.62
DyHGCN 10.88 20.54 26.74 5.60 6.04 6.12
MS-HGAT 11.93 21.76 28.67 5.99 6.43 6.53
DisenIDP 13.16 23.54 30.53 6.16 6.47 7.09
MIDPMS 14.87 26.19 35.17 7.91 8.24 8.73

HG2RLink(ours) 18.34 33.77 41.91 9.33 10.04 10.15

out a large number of extremely short cascades. These short cascades
do not provide much help for the model to learn complex implicit
relationships between different users. On the Douban dataset, however,
the performance of all models decreased. By observing the statistical
information of the dataset, this phenomenon can be easily explained.
In the extracted new dataset, the ratio of users to cascades increased
(2.1 in the original dataset compared to 2.7 in the new dataset),
which means there are more implicit relationships between users in
fewer cascades. As for the Twitter dataset, this ratio did not change
(remained at 3.6), and as a result, the model’s performance did not
show significant variations. Considering the experiment’s findings, the
most obvious trend is that the values of Hits@k and MAP@k increase
with the number of retrieved candidate nodes. We have the following
more detailed observations:

In general, the HG2RLink consistently achieves improvement on
the four datasets compared with all baselines. On the Weibo dataset,
our model has shown gains of over 4% on Hits@k, as well as over
2% on Map@k. On the Twitter dataset, our model performs 3% better
than the baseline models on Hits@10 and Hits@50 and 2% better on
MAP@k. On the Memetracker dataset, we can observe that in addition
to our model, the performances of other baselines are not bad, this is
because of the fact that all cascades in this dataset are short so that
all models can easily capture their diffusion structure. In comparison,
our model has improved by over 3.7% on Hits@10, over 4.1% on
Hits50. On the Douban dataset, our model achieves more than a 3%
improvement in the Hits@k metric and more than a 1.4% improvement
in the MAP@k metric compared to the other model. According to the
combined findings of the four datasets, our model shows an average
increase in the Hits@k metric of 4.4% and the MAP@k metric of 1.8%.

Evaluation of generalization. From the model perspective, TopoL-
TM only constructs the diffusion sequence into a graph structure, but
gnores social network structure. Although FOREST considers social
etwork structure, it only models the diffusion sequence as a sequential
attern, which is insufficient to model the complex diffusion behavior
nd users’ dynamic preferences. DyHGCN takes into account both
ocial relationships and users’ dynamic preferences. It can also be
een from the experimental results that their prediction effectiveness
s successively improved. Meanwhile, it reflects that network structure
nd users’ dynamic preferences are both important for sequence dif-
usion prediction. MS-HGAT captures user dynamic preferences using

emporal attention mechanisms and highlights the feature within the
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Fig. 6. Number of heads on the Weibo, Twitter, Memetracker, and Douban datasets about Hits@k(a) and MAP@k(b) (%).
cascade with a memory-enhanced embedding lookup module. DisenIDP
employs an intent-aware hypergraph to identify users’ latent pref-
erences, then decouples preferences through lightweight hypergraph
convolution activations. MIDPMS models information dissemination as
a substitution system among different messages, taking into account
the lifespan of content, user preferences, and the impact of anticipated
latent content. Although these methods identify user preferences in
various ways, they do not explore the more complex multimodal in-
teractions between users and cascades. Compared with these baselines,
our HG2RLink framework not only considers the graph structures of
diffusion sequences and social relations, but also models the interrela-
tionships between diffusion sequences. The HG2RLink can better reflect
the global preferences of users, because it can unify multimodal inter-
actions that not only include the interaction between users, but also
innovatively construct the interaction of structure and user similarities
between rumors and the interaction between rumors and users. The
experimental results also verify that the global representation helps to
predict rumor diffusion. It is worth noting that although Weibo and
Twitter have many similarities in many aspects, there are differences in
the experimental results of their datasets. We analyze that this differ-
ence is mainly due to the diversity of information dissemination modes.
In today’s SNS, information diffusion is not strictly based on follower
relationships as it was 10 years ago, but there are many potential
information pushes, which may be formed by system recommendations.
That is to say, even if there is no social relationship between two users,
they may be pushed to each other because of the same interest or
information popularity. Therefore, there are hidden and uncapturable
relationships between users in the Weibo dataset, which leads to sparser
user social relationships in the dataset than in the Twitter dataset.
Nevertheless, our model performs the best on Weibo data, proving that
our model has strong generalization ability.

5.5.2. Parameter analysis
In this section, we study how the number of heads ℎ in the multi-

head attention mechanism can affect the performance of our frame-
work on three datasets. Thus, we conduct a sensitivity analysis on
hyper-parameters ℎ.

Fig. 6(a) shows the different Hits@k values, and Fig. 6(b) shows the
corresponding MAP@k values. The horizontal axis represents different
evaluation metrics, the vertical axis represents the corresponding val-
ues. Different colors indicate different numbers of heads. From these
results, we can see that starting from 2 heads, the performance almost
9 
Table 6
Ablation study on Weibo dataset (%).

Model Hits Maps

@10 @50 @100 @10 @50 @100

HG2RLink 24.25 33.46 36.09 13.40 13.89 13.93
Scheme 1 16.70 23.38 27.90 11.15 11.48 11.54
Scheme 2 13.71 20.19 23.23 10.09 10.39 10.43
Scheme 3 24.82 30.11 33.10 12.78 13.01 13.67

Table 7
Ablation study on Twitter dataset (%).

Model Hits Maps

@10 @50 @100 @10 @50 @100

HG2RLink 36.83 52.58 60.27 26.83 27.5 27.61
Scheme 1 16.43 25.17 30.14 7.19 7.41 8.34
Scheme 2 15.06 21.86 27.97 6.13 6.91 7.13
Scheme 3 31.88 45.69 54.68 22.93 23.55 23.67

Table 8
Ablation study on Memetracker dataset (%).

Model Hits Maps

@10 @50 @100 @10 @50 @100

HG2RLink 50.48 74.01 81.23 24.87 26.03 26.13
Scheme 1 30.32 49.17 59.41 13.15 13.57 13.95
Scheme 2 27.13 46.17 55.87 12.39 12.57 13.02
Scheme 3 48.19 68.25 76.32 19.28 19.47 20.13

Table 9
Ablation study on Douban dataset (%).

Model Hits Maps

@10 @50 @100 @10 @50 @100

HG2RLink 18.34 33.77 41.91 9.33 10.04 10.15
Scheme 1 10.25 16.68 24.02 5.24 5.93 6.26
Scheme 2 9.36 15.49 21.15 5.16 5.34 5.93
Scheme 3 17.25 27.69 35.73 7.15 7.53 8.14

gradually improves with increasing number of heads until at ℎ = 8, and
then starts to decline. This also verifies that multi-head attention allows
the model to jointly attend and capture information from different
subspaces, thus enhancing the effectiveness of the model. However,
experience shows that more heads are not always better. When the
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number of heads exceeds a certain threshold, the memory consumption
and the cumulative error grow as the number of heads increases.
Additionally, the outcomes of the experiment show that when ℎ > 8,
he performance of the model decreases. Therefore, we choose 8 as the
yper-parameter in the multi-head attention model.

.5.3. Ablation study
In order to further explore the importance of the relevant steps in

he proposed HG2RLink, three ablation studies are implemented on the
our datasets over the different parts of the framework. Table 6, 7, 8
nd 9 shows the overall performance of three variant schemes and the
G2RLink. The ablation studies are conducted as following orders:
-scheme1 w/o masked multi-head attention in rumor link predic-

ion module: Replace the masked multi-head attention model with a
CN model.
-scheme2 w/o dual-channel representation learning and global re-

ationship coding modules: Remove these two modules, and use ran-
omly initialized user embedding as the input of the rumor link pre-
iction module.
-scheme3 w/o user performance in HGNN model: Remove the user

erformance matrix P, and use the original incidence matrix H as the
nput in the hypergraph convolution layer of HGNN.

We first verify the impact brought by the link prediction module.
hen replacing the multi-head attention model with a GCN module, we

an see a significant effect on all evaluation metrics. The performances
rop a lot compared with the HG2RLink. The possible reason is that the
CN module only considers the information fusion of adjacent nodes
nd ignores the sequence information of the diffusion link. However,
he multi-head attention mechanism realizes the allocation of different
earning weights to different neighbors, which greatly improves the
bility to capture the correlation of spatial information. In summary,
he capacity to predict rumor links is improved by the multi-head
ttention mechanism.

In addition, we evaluate the influence of the global coding rep-
esentation of users. Referring to Table 6, 7, 8 and 9, the lack of
ual-channel representation learning and global relationship coding
odules also brings significant performance decline on all evaluation
etrics. Obviously, randomly initialized user embedding generated

y Deepwalk ignores a variety of interactive relations in the process
f rumor diffusion, especially the influence of rumors on users. In
ur framework, the dual-channel representation learning and global
elationship coding modules make the distance among users reposted
dentical rumors close to each other. The combination of global rela-
ionships provides a complementary effect from the global aspect. As a
esult, the findings indicate that it is crucial to clearly encode the local
nd global linkages for users and rumors.

Finally, we evaluate the suggested framework without taking users’
erformance into account. Specifically, before performing the hyper-
raph convolution layer of HGNN, we remove the users’ performance
atrix P, and use the original incidence matrix H of the hypergraph
= (𝑉 ,𝑋) as the input of subsequent model. Experimental results of

cheme3 show that the removal of users’ preferences still reduces the
erformance of prediction. This also reflects that the users’ preferences
mbedded in the user representation are crucial and useful.

Through ablation studies on four diverse datasets, we observed con-
istent trends. This indicates that HG2RLink exhibits stable and reliable
erformance across various datasets. Notably, Scheme 3 has demon-
trated a performance profile most closely aligned with HG2RLink,
articularly excelling in the Hits@10 metric on the Weibo dataset. The
hallenge in this type of task lies in the precise selection of the top 10
redicted probabilities to define the hit range. Despite this, the demon-
trated consistency across various scenarios significantly bolsters our
onfidence in HG2RLink. It highlights the model’s robust generalization
bility to adapt to the unique characteristics of diverse datasets.
10 
5.6. Limitations

To investigate the model’s limitations under specific case, we ana-
lyzed the node attributes of some users during the inference phase. We
found that our approach still has certain limitations in the following
scenarios:

Case 1: When the degree centrality or eigenvector centrality of
sers in social networks is very low, the model may find it difficult
o accurately predict their behavior due to their low influence.
Case 2: Users who infrequently participate in reposting activi-

ies and only appear during specific information cascades present an-
ther challenge. Their sparse presence within the hypergraph impedes
ccurate prediction.

While our model generally shows robust performance, its predic-
ive accuracy is diminished in marginalized scenarios. Future research
hould explore incorporating more behavioral data to improve the
odel’s adaptability in these situations.

. Conclusion and future works

With the prevalence of online social networks, once a rumor breaks
ut, it will quickly spread and it is necessary to timely interrupt its
ropagation chain. The process of rumor dissemination should be seen
s a system, and considering the global information of the system is
ery important. Combining multimodal interactions among users and
umors can help predict rumor links that are missing or will be possi-
ly formed in the future. Therefore, our work proposes a framework
hat avoids using historical data and manually designed features by
xploring the mechanism of multimodal interactions among users and
umors. Specifically, we proposed a deep neural network framework
ith global attention based on hypergraph, namely HG2RLink. To
odel the interactions between users and rumors, we constructed

he rumor interactive hypergraph first. Based on the hypergraph, the
G2RLink utilized a variety of machine learning techniques, such
s network representation learning, HGNN, and multi-head attention
echanism, to effectively encode the interactions of users and rumors

xplicitly, and unify multimodal interactions with a global encoding,
hile considering the influence of user preferences on link prediction.
or prediction, the HG2RLink applied the representation of rumor
iffusion sequence with sequential characteristics generated by the
sers’ final representation as the input to get the final prediction result.
o demonstrate the superior performance of the proposed HG2RLink,
e introduced a new Weibo dataset and other three public datasets

ompared with four baselines. The experimental results showed that
he HG2RLink performed better on several different evaluation metrics
n four real-world datasets. Meanwhile, the validity of the modules of
he HG2RLink framework was verified through an ablation study.

This theoretical implication of our work is that we explored the
ossibility of multimodal interaction modeling, and unified multimodal
nteraction to improve the accuracy of rumor diffusion prediction. In
ddition, its practical implication is that our framework has good trans-
erability and generalization ability. This means that it is a universal
ramework that can be applied to other types of information diffusion
rediction tasks, and it has great application potential. In a word,
his framework provides a new idea and method for monitoring and
ontrolling rumors in emergency management, and this new dataset
an not only be used for rumor diffusion prediction tasks, but also for
ther SNS analysis tasks, which is of great significance for academic
esearch.

In the paper, we mainly focused on a variety of interactions among
umors and users. Overall, different rumors and user preferences play
mportant roles in rumor diffusion link prediction. However, the studies
n understanding the user representation from the content features and
he location of rumors are not deep enough and complete. Therefore, it
s potential and valuable to utilize multiple channels of data for rumor
iffusion link prediction in future work.
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