
Fast and robust text detection in images and video frames

Qixiang Yea,*, Qingming Huangb, Wen Gaoa,b, Debin Zhaoc

aInstitute of Computing Technology, Chinese Academy of Sciences, China
bGraduate School, Chinese Academy of Sciences, China

cDepartment of Computer Science, Harbin Institute of Technology, China

Received 12 April 2004; received in revised form 12 October 2004; accepted 14 January 2005

Abstract

Text in images and video frames carries important information for visual content understanding and retrieval. In this paper, by using

multiscale wavelet features, we propose a novel coarse-to-fine algorithm that is able to locate text lines even under complex background.

First, in the coarse detection, after the wavelet energy feature is calculated to locate all possible text pixels, a density-based region

growing method is developed to connect these pixels into regions which are further separated into candidate text lines by structural

information. Secondly, in the fine detection, with four kinds of texture features extracted to represent the texture pattern of a text line, a

forward search algorithm is applied to select the most effective features. Finally, an SVM classifier is used to identify true text from the

candidates based on the selected features. Experimental results show that this approach can fast and robustly detect text lines under

various conditions.

q 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Images and videos on webs and in databases are

increasing. It is a pressing task to develop effective

methods to manage and retrieve these multimedia

resources by their content. Text, which carries high-level

semantic information, is a kind of important object that is

useful for this task. For example, text in web images can

reflect the content of the web pages. Text on book and

journal covers can be helpful to retrieve these digital

resources [1]. Caption text in news videos usually

annotates information on where, when and who of the

happening events [2]. Sub-title in sport videos often

annotates information of score, athlete and highlight.

Scene text often suggests the presence of a fact such as

advertisement board, traffic warning, etc. Compared with

the other image features, text is embedded into images or
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scenes by human, which can directly reveal the image

content in a certain point of view without requiring

complex computation. Therefore, it has inspired a lot of

research on text detection and recognition in images and

videos [1–15].

The role of text detection is to find the image regions

containing only text that can be directly highlighted to the

user or fed into an optical character reader module for

recognition. It is an essential step for text recognition. In

some cases, text detection becomes even meaningful by

itself. For example, finding the appearance of a caption in

news video can help to locate the beginning of a news

item.

Although a lot of approaches have been developed on

text detection in real applications [1–15], fast and robust

algorithms for detecting text under various conditions need

to be further investigated. Here ‘robust’ is referred to the

following criteria:
(1)
 Good performance (high recall rate and low false alarm

rate) for text of various font-size, font-color, orien-

tations, languages and in complex background;
(2)
 Constant performance with minimized need for manu-

ally fine-tuning the parameters or rebuilding a model.
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Image or video frame
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To develop a fast and robust text detection algorithm is a

nontrivial task since there exist such difficulties as:
Training samplesMultiscale wavelet 
(1)
 Text may be embedded in complex background;

decomposition
(2)
Trained SVM
modelCandidate text line 
It is difficult to find effective features to discriminate

text with other text-like things, such as leaves, window

curtains or other general textures;
localization
(3)
 Text pattern varies with different font-size, font-color

and languages;
(4)

Text identification
Text quality decreases due to noise and image

encoding/decoding procedure.

using texture features

Multiscale (orientation) 
merging

Bootstrap
Considering all the above issues, we present a text

detection algorithm by fully taking advantage of the

following text properties:
False alarms

(1)
 Dense intensity variety;
Detected text lines

(2)
 Contrast between text and its background;
Fig. 1. Flow chart of the proposed method.

(3)
 Structural information;
(4)
 Texture property.
In the algorithm, instead of classifying an image block

into text or nontext block by supervised classification

models [6,12], a new coarse-to-fine detection framework is

proposed by applying different text properties in different

detection stages. In the coarse detection, candidate text

regions are firstly obtained using property (1) and (2) by

assuming that all text regions have dense intensity variety

and contrast with its background. And then these regions are

separated into text lines using property (3). In the fine

detection, property (4) is used to discriminate text with other

nontext patterns whose dense intensity variety is similar to

that of text. We extract four kinds of texture features to

identify text lines from the candidate ones including wavelet

moment features, wavelet histogram features, wavelet

co-occurrence features and crossing count histogram

features. A feature selection algorithm is used to find

effective features and an SVM classifier is employed to

perform text/nontext classification task. Fig. 1 is the flow

chart of the proposed algorithm.

Compared with existing approaches, the main advan-

tages of the proposed algorithm are as follows:
(1)
 Fast detection. The method is in a coarse-to-fine

framework, which avoids performing computational

intensive classification on the whole image block by

block. The feature selection procedure reduces feature

dimension and improves the classification efficiency.
(2)
 Multiscale text detection. The pattern of text may vary a

lot with the change of text font-size. In this paper,

multiscale wavelet features are extracted and used to

ensure that text with different font-size be correctly

detected without performing the scale down operation

on the original image. Although Li et al. [12] also used

the wavelet features for text detection, they calculated

the mean, second- and third-order central moment
features in the first three decomposition levels (scales)

for text blocks detection while in our method we detect

text by using the wavelet features in the suitable scale

(as explained in Section 4.1).
(3)
 Combination of texture features. In previous works,

researchers use the traditional texture features to

discriminate text with nontext patterns. In this paper,

four kinds of features are combined to do this task. A

forward feature selection algorithm is employed to find

the degree of importance for different features.
(4)
 Truly robust text detection. The method can detect text

in different sizes and colors. It is also insensitive to text

line orientation by using oriented region growing

templates. The fine classification procedure reduces

false alarms and makes the method effective even in a

complex background. Furthermore, texture features are

extracted in a whole text line instead of a small image

block. These features are much more robust than

features from a small image block that may contain

insufficient texture information for classification.
The rest of the paper is organized as follows. Section 2 is

a literature survey of related works. We present the coarse

detection procedure in Section 3 and describe the fine

detection process in Section 4. Experimental results are

presented in Section 5. The paper is concluded with a

discussion of future work in Section 6.
2. Related works

Dozens of text detection algorithms are presented in the

past years using the text properties described in Section 1.

Various kinds of features are explored to capture these

properties.
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Edge (gradient) is a preferred feature. In [3], Smith et al.

detect text by finding text box ‘horizontal rectangle

structure of clustered sharp edges’. Their algorithm is

scale dependent, that is, only text with certain font-size can

be detected. Sato et al. [4] also use edge features and

structural constraint to detect captions in video frames. Wu

et al. [5] use nine second-order Gaussian derivatives to

extract vertical strokes in horizontal aligned text regions.

Strokes are connected into ‘chip’ if they are connectable and

there exists a path between them whose length is less that

three times the height of the stroke. The chip will be further

checked by structural properties like values of height, width

and width/height. Lienhart and Wernicke [6] locate text in

images and video frames using the image gradient feature

and a neural network classifier. Chen et al. [7] and Ye et al.

[8] use the Canny edge feature and morphological ‘close’

operation to detect candidate text blocks. Chen et al. [7] use

the ‘dist-map’ feature to verify the candidate text to reduce

the false alarms. The above methods often have a high recall

rate but produce many false alarms since background blocks

may also have strong edge (gradient) just as text does. And

pure structural property is not competent for eliminating

false alarms.

Jain and Yu [9] propose a classical text detection

algorithm based on connected component analysis. The

method can detect text in web images, video frames and

some document images such as newspapers. In the

algorithm, after the original image is decomposed into a

multi-value map, connected components of color are

selected, which will be regarded as text if they are accepted

by any of the following strategies: (1) inter-component

features (geometry and connection property), (2) projection

profile features in both horizontal and vertical orientations.

The probability of missing text is minimized at the cost of

increasing false alarms. Zhong et al. [10] also use the

connected component analysis to locate text in complex

color images. Although the method is a classical one and is

effective for most of the text detection tasks, it fails when

there are characters of different colors in a text line. In

addition, the authors do not mention the scale problem.

Texture analysis is employed in some works to

discriminate text with nontext [1,11–13]. Li et al. [11,12]

use mean, second- and third-order central moments in

wavelet domain as the texture features and a neural network

classifier is applied for text block detection. In their

detection results, small isolated areas are filtered out and

large text blocks are connected into text regions. Zhong

et al. [1] detect text in JPEG/MPEG compressed domain

using texture features from DCT coefficients. They first

detect blocks of high horizontal spatial intensity variation as

text candidates, and then refine these candidates into regions

by spatial constraints. The potential caption text regions are

verified by the vertical spectrum energy. But its robustness

in complex background may not be satisfying for the

limitation of spatial domain features. Kim et al. [13] propose

a texture-based method using support vector machine
(SVM). Classification models trained by an SVM on

original gray values of a pixel’s neighborhood are used to

identify a pixel as text or nontext pixel. Text pixels will be

post-processed by an adaptive mean shift (CAMSHIFT)

algorithm and connected into text chips. Although the

SVM-based learning approach makes the algorithm fully

automatic, it is still difficult to discriminate text with nontext

using pure texture features in complex background since the

feature is insufficient to discriminate text with general

textures. In [6,11–13], classification on each of the pixel

(image block) will be a time-consuming task.

Some researchers use video temporal information to

detect video captions by considering that the appearance of

a caption will bring on difference in successive frames. Tang

et al. [14] first filter the difference of successive frames by

four edge operators and then divide the output into K blocks.

Furthermore, they use the means and variances of these

filtered blocks and a fuzzy clustering neural network

(FCNN) classifier for text identification. Although temporal

information can be used to track text [12] and enhance its

quality for recognition [15], it may not be a good feature for

text detection because precise shot boundary detection is

needed before identifying the appearance of a text line,

which will increase the computation complexity. Further-

more, if a text line appears on a shot boundary, temporal

information will fail to detect it.

Based on the above discussion, we can see that although

a lot of research has been carried out in text detection, more

robust and effective method still needs to be developed.
3. Coarse detection

Coarse detection is to find all of the possible text lines in

an image. In this procedure, the wavelet energy feature is

used to locate candidate pixels and a new region growing

method is applied to connect the candidate pixels into

regions. Text in non-horizontal orientations is detected by

using orientated region growing templates. Non-horizontal

candidate will be rotated into the horizontal orientation for

further processing. Obtained regions are then separated into

text lines by structural property.
3.1. Multiscale wavelet decomposition

Daubichie4 wavelet transformation [16] is employed in

our work for its good location performance [17], which is

computed by applying separable filter banks on the image as

Inðbi; bjÞ Z ½Gx*½Gy *InK1�Y2;1�Y1;2ðbi; bjÞ

Dn1ðbi; bjÞ Z ½Hx *½Gy *InK1�Y2;1�Y1;2ðbi; bjÞ

Dn2ðbi; bjÞ Z ½Gx *½Hy *InK1�Y2;1�Y1;2ðbi; bjÞ

Dn3ðbi; bjÞ Z ½Hx *½Hy *InK1�Y2;1�Y1;2ðbi; bjÞ;

(1)



Fig. 2. Two-level wavelet transformation. (a) The original image with text

in different font-size and (b) the wavelet transformation images in two

levels.
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where * denotes the convolution operator, (Y1,2) sub-

sampling along rows (columns) and I0 is the original

image, H and G are high and low bandpass filters,

respectively. bi and bj are the locations in two directions

in a decomposition level. {In, Dnk}kZ1,2,3, nZ1,2,.,l is the

multiscale representation of depth l of the original image. In

are the low resolution images at level n, Dnk are the wavelet

coefficients obtained by bandpass filtering which contain the

intensity variety information in level n. Fig. 2 shows that

text with different sizes are emphasized in different

decomposition levels (scales). It also strongly implies that

text in different sizes can be extracted from the different

levels of the wavelet decomposition images.
3.2. Candidate text pixels detection

Considering intensity variety (property 1 in Section 1)

around the text pixels, the wavelet coefficients around the

pixels should have large values (as shown in Fig. 3(b)).

Then, we define the wavelet energy feature of a pixel at (i, j)
Fig. 3. Candidate text region detection. (a) Original image, (b) candidate

pixels in the first scale, (c) horizontal candidate regions in first level by

‘close’ operation and (d) by density-based region growing method.
in level n as

Enðbi; bjÞ Z
X3

kZ1

½Dnkðbi; bjÞ�
2

 !1=2

(2)

for candidate pixels detection by integrating the wavelet

coefficients in the three high frequency subbands (LH, HL and

HH subbands). The wavelet energy feature En(bi, bj) reflects

the intensity variety around a pixel in level n. A pixel will be a

candidate text pixel in level n if its wavelet energy feature is

larger than a dynamic threshold, which is described as

Cnði; jÞ Z
1 if ðEnðbi; bjÞÞOTC

0 otherwise
;

(
(3)

where Cn(i, j) is the map of candidate text pixels in level n (as

shown in Fig. 3(b), candidate pixels in the first level are

projected into original image). TC is a threshold determined as

TC Z
tB if tBO tC;

tC otherwise;

(
(4)

where tB is the basic threshold whose value is set to be 30.0

which is proved to be the minimum value that a text pixel can

be perceived by human from its background. tC is determined

by energy histogram (H(i))) curve analysis of the whole image

(Fig. 4). The value of tC is calculated by

XWEmax

iZtC

HðiÞ

� XWEmax

jZ0

HðjÞ Z tArea: (5)

In Eq. (5), tC ensures that pixels whose histogram lies in

shadow area (Fig. 4) be detected as candidate pixels.

Empirically, we found that text pixels in an image rarely

exceed 15% of the whole image pixels. Therefore tArea is

selected as 0.15. The determination of TC in this way can

ensure that the candidate detection works robust in image of

different contrast. For the image of low contrast, tB is selected

for TC, which ensures that most of the background pixels be

excluded. With the increment of image contrast and complex-

ity, tC is selected and adaptively calculated. And the larger the

image contrast is, the bigger tC should be. Pixels whose

contrast is higher than TC are selected as candidates.
Fig. 4. Wavelet energy histogram of an image.



Fig. 6. An example of horizontal projection profile. Multi-line text can be

separated at the ‘valley’ of the project profile.
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3.3. Density-based region growing

A text region is made of a ‘cluster’ of text pixels. None

but ‘dense’ text pixels can construct a text region and the

isolated candidate pixels are often noises. Morphological

operation such as ‘close’ operation is often used to connect

text pixels (blocks) into text regions [2,7,8]. In the

operation, all of the pixels near to each other will be

connected despite whether they form a ‘cluster’ of text

pixels or not (Fig. 3(c)). In this paper, ‘density-based’ region

growing method is proposed to fulfill this task.

A pixel P will be a seed pixel if the percentage of

candidate pixels in its neighborhood is larger than the

threshold TD. The neighborhood is a 16!10 template in all

levels. To find text lines in non-horizontal orientations,

horizontal template is rotated by 30 degrees each time to get

six templates (Fig. 5). TD is set as 0.35 in our experiments. A

pixel P 0 is considered to be density-connected with pixel P

if P 0 is within the neighborhood of P and P is a seed pixel.

By these definitions, the region growing method is described

as follows:
(1)
 Search the unlabeled candidate pixels to find a seed

pixel;
(2)
 If a seed pixel P is found, a new region is created. Then,

we iteratively collect unlabeled candidate pixels that are

density-connected with P, and label these pixels with

the same region label;
(3)
 If there are still seed pixels, goto (1);
(4)
 Label each found region as a text region. Merge the

pixels that are not included in any text region with the

background.
Fig. 3(d) is an example of text regions found by the

proposed ‘density-based’ region growing algorithm in the

first scale and horizontal orientation. It can be seen that

the result is much better than that of morphological

algorithm (Fig. 3(c)).

The orientation of text lines in a candidate region can be

considered to be consistent with the orientation of region

growing template as illustrated in Fig. 5. Therefore,

candidates in non-horizontal orientation can be rotated to

(approximately) horizontal orientation for further proces-

sing. In the following, we only need to process the

(approximately) horizontal text.
3.4. Getting candidate text lines

Many detected text regions contain multi-line text. A

projection profile operation [6] is employed to separate
Fig. 5. Region growing templates for text in different directions.
these regions into text lines. A horizontal projection profile

is defined as the sums of the candidate pixels over rows.

Fig. 6 shows an example of projection profile of a candidate

pixel map. To separate the two text lines in the example, we

need to find the ‘valley’ on the profile where the profile

value is smaller than a threshold TP and then segment the

two text lines at the valley. TP is calculated as

TP Z ðAvgprofile CMinprofileÞ=2:0; (6)

where Minprofile and Avgprofile are the minimum value and

average value of the profile, respectively. This scheme can

also be extended to more than two text lines separation.

For each of the candidate text lines, simple structural

information will be used to reduce the apparent false alarms.

It is observed that text height should be larger than 8 pixels

to be seen clearly by human. The candidate whose height is

smaller than 8 pixels or width/height!1.0 is discarded as

nontext.
4. Fine detection

All image blocks with abrupt intensity variation may be

falsely detected as candidate text lines, especially for

general textures such as window curtains, leaves, etc. In the

following, texture features are extracted to identify true text

from the candidate ones.
4.1. Feature extraction in suitable scale

Text can be regarded as a kind of texture pattern, but the

texture properties such as regularity and directionality are

weak. It just contains some character strokes that form a text

line in a special orientation. Then, only one kind of texture

feature is insufficient to model text’s texture pattern. In this

paper four kinds of features are combined to represent a text

line, three of which are extracted in wavelet domain and one

in gradient image. The gradient features are extracted in the

original image and the wavelet texture features are extracted

in the level where the candidate text lines are located, say

the suitable scale.

Text of large font-size can be seen as a relatively low

frequency signal while text of small font-size as a relatively

high frequency signal. According to the wavelet decompo-

sition theory [16], low frequency signal will have similar

wavelet response in deep wavelet decomposition scale as



Table 1

Features used for text/nontext classification

Feature set Feature description Number

of

features

Number

of feature

selected

Wavelet moments

features

Mean, second-, third order

moments

9 6

Wavelet

histogram

features

Wavelet energy histogram

and direction histogram

20 10

Wavelet

co-occurrence

features

Energy, entropy,

homogeneity and

correlation

180 16

Scan line features Crossing count histogram 16 9

Total 225 41
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high frequency signal in shallow scale. Therefore, repre-

senting text wavelet response in suitable scale will unify the

text pattern and reduce the burden on selecting representa-

tive training samples for text of different font-size. If a text

line has the most candidate pixels (projected to original

image) in scale n, it can be considered to have the best

wavelet response in this scale. Then n is considered to be the

suitable scale in which texture features are extracted to

represent this text line.

The descriptions of the features are listed in Table 1.

(1) Wavelet moment features. Text and nontext have

different intensity variance and spatial grey value distri-

butions. Wavelet mean and central moment features are

extracted to reflect this character. The features are the

primary texture features in wavelet domain. Li et al. [12]

have proved the effectiveness of these features in text block

identification. For a M!N text line T, the mean (m), second-

order (m2) and third-order (m3) central moments are

calculated as
mðTÞ Z
1

M !N

XMK1

iZ0

XNK1

jZ0

Tði; jÞ;

m2ðTÞ Z
1

M !N

XMK1

iZ0

XNK1

jZ0

ðTði; jÞKmðTÞÞ2;

m3ðTÞ Z
1

M !N

XMK1

iZ0

XNK1

jZ0

ðTði; jÞKmðTÞÞ3;

(7)
Fig. 7. The first row in (a) is a text image, the second row is its wavelet energy map

the second row is its wavelet energy map and the WEH and WDH histograms.
where T(i, j) represents wavelet coefficients of pixel (i, j).

The features in (7) are calculated in the high frequency (HL,

LH and HH) subbands. There are totally 9 features

(3 subbands!1 level!3 features).

(2) Wavelet histogram feature. Histogram is a kind of

effective feature to represent the first order distribution of

signatures. Two kinds of histogram features, wavelet energy

histogram (WEH(i), iZ0,.,15) and wavelet direction

histogram (WDH(i), iZ0,1,2,3) are used to represent the

energy and direction distribution of a text line. To calculate

the WEH(i), wavelet energy of all pixel is quantized into 16

levels by

WEq Z WE!16=ðWEmax KWEminÞ; (8)

where WE is the wavelet energy of a pixel, WEmax and

WEmin are the maximum and minimum energy values of the

image, respectively. We then compute the wavelet energy

histogram on the quantized energy value. The value of

WEH(i) is the percentage of the pixels whose quantized

energy is equal to i. For a text line, the bins at the front and

tail of WEH(i) should be large while bins in the middle parts

of WEH(i) should be small (Fig. 7(a)). This is caused by the

contrast between text and its background. For a general

texture, the WEH(i) may not be so (Fig. 7(b)).

WDH(i) contains horizontal (iZ1), vertical (iZ2),

dialog (iZ3) and non-direction (iZ0) bins. We declare

that a candidate pixel has a horizontal (vertical, dialog)

direction in level n when Dn1(Dn2, Dn3) is the largest one

among {Dnk}kZ1,2,3. All non-candidate pixels will be non-

direction pixels. The value of the bin in direction i is the

percentage of pixels on the direction compared with the

number of all pixels in the text line. WDH(i) can be used to

discriminate text with general textures with distinct

directionality as shown in Fig. 7(b).

(3) Wavelet co-occurrence features. Histogram features

are first order statistics. When the first order statistics are

insufficient, second order statistics can be used to improve

texture discrimination power by describing correlations

among adjacent pixels [18]. Co-occurrence features for

three high frequency subbands are used. The element (i, j) of

the co-occurrence matrix C(d, q) is defined as the joint

probability of a wavelet coefficient DnkZi co-occurring with

a coefficient DnkZj on a distance d in the direction q [19].

The features of energy, entropy, inertia, local homogen-

eity and correlation in co-occurrence matrixes are
and the WEH and WDH histograms. The first row in (b) is a nontext image,
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calculated as

Energy : Eðd; qÞ Z
X

i;j

C2ðd; qÞ;

Entropy : Hðd; qÞ Z
X

i;j

Cðd; qÞlog Cðd; qÞ;

Inertia : Iðd; qÞ Z
X

i;j

ði K jÞ2Cðd; qÞ;

Local homogeneity : Lðd; qÞ Z
X

i;j

1

1 C ði K jÞ2
Cðd; qÞ;

Correlation : Cðd; qÞ Z

P
i;jði KmxÞðj KmyÞCðd; qÞ

sxsy

;

(9)

where mx, my and sx, sy are means and variances of the

concurrence matrix C(d, q). q is the direction of co-

occurrence that is selected as 0, 45, 90 and 135 degree. d is

the co-occurrence distance, which is set to be 1, 3 and 5

pixels in this paper. By calculating features in the 12 co-

occurrence matrixes in 3 wavelet subbands (HL, LH and

HH), we obtain (3 subbands!12 co-occurrences!5

features) 180 co-occurrence features.

(4) Crossing count histogram feature. The above-

mentioned features do not consider the periodicity of text

along the text line. For the limited length of a text line,

frequency analysis is not suitable for capturing the

periodicity. Therefore, normalized crossing count histogram

(CCH) on gradient projection map (GPM) is used to do this

task. CCH is the histogram statistics of crossing count of all

horizontal scan lines. To calculate CCH, gradient values

(Fig. 8(b)) are first projected into one dimension data along

the horizontal direction to obtain gradient projection map

(Fig. 8(c)). After Gaussian smoothing, it can be seen that

there are regularity and periodicity in the GPM. A crossing
Fig. 8. Gradient crossing count histogram features. (a) The original image,

(b) the gradient image, (c) the gradient projection along horizontal direction

and (d) the smooth gradient projection with several scan lines.
count is calculated as the number of times the pixel value in

GMP changes from 0 (white) to 1 along a horizontal raster

scan line (Fig. 8(d) shows an example containing four scan

lines). Suppose CC(k), kZ1,2,.,N is the crossing count of

a horizontal scan line k and N is the scan line number. The

value of CCH 0(k) is calculated as

CCH0ðkÞ Z
CCðkÞPN
iZ1 CCðiÞ

: (10)

For example, if the maximum of gradient projection is 300,

we use NZ300 lines to scan the GMP and obtain 300 bins

CCH 0(k), kZ1,2,.,300. By normalizing CCH 0(k) into 16

bins as

CCHðiÞ Z
1

16

XðiC1Þ N
16

kZi N
16

CCH0ðkÞ; i Z 1; 2;.; 16; (11)

where (i(N/16), (iC1)(N/16) represents a non-overlapped

window, we obtain the normalized crossing count histogram.

The CCH can reflect the distribution of the crossing

counts of all scan lines and then coarsely reflect the

periodicity of GMP on text line orientation.

4.2. Feature selection

We extract a total of 225 features from a text line

(Table 1). Although all of these features can be used to

distinguish text with nontext, some features may contain

more information than others. Using only a small set of the

most powerful features will reduce the time for feature

extraction and classification. Furthermore, the existing

research has shown that when the number of training

samples is limited, using a large feature set may decrease the

generality of a classifier [20]. Therefore, feature selection is

performed before they are fed into the classifier.

For selecting the effective features for SVM classifier

(which will be introduced in the next section), a forward

search algorithm [20] is used to perform the feature

selection task.

The feature set F is first divided into selected feature set

FS and unselected feature set FU, and then selected one by

one using the following procedure:
(1)
 Set FSZf and FUZF;
(2)
 Label all of the features in FU untested;
(3)
 Select one untested feature f from FU and label it as

tested;
(4)
 Put f and FS together to form the temporary testing

feature set ~FS;
(5)
 Evaluate the classification performance of ~FS;In this

procedure, 1000 positive (text) samples and 2500

negative (nontext) samples are randomly selected

from the training set for train and classification tasks.

The samples are divided into 10 shares, one is selected

for testing and others for training. The operation is

repeated until all samples have been used as training



Fig. 9. Feature selection. The best classification result is achieved when 32

features are selected.

Fig
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and testing samples once. The average accuracy for all

iterations is set as the estimated accuracy for the testing

feature set. Accuracy is defined as

Accuracy Z
Number of correctly classified samples

Number of samples
:

(12)
(6)
 If there are still untested features in FU, goto (3);
(7) Find a feature f̂ such that when we add it into the

feature set ~FS, the highest classification accuracy will

be obtained

f̂ Z argmax AccuracyðF̂SÞ

and then move f̂ from FU to FS;
(8)
 If there are still untested features in FU, goto (2) and if

FU is empty, the procedure exists.
Fig. 9 is the accuracy curve of feature selection. It can be

seen on the curve that when the number of selected features

increases, the accuracy increases sharply at first but will
Fig. 10. Examples of the training data,

. 11. Text detection results. (a) The coarse detection result, (b) the result aft
slightly decrease when the number pass 41. Then the first 41

features should be selected. The selected features are listed

in the last column in Table 1. It can be seen that almost all of

the wavelet moment features are selected, which shows that

these features are the most important features. About half

CCH features are selected, which show that they have the

middle discriminating power. There are less histogram and

co-occurrence features selected. In the following, training

and classification are performed on the 41 selected features.
4.3. Training and classification

Compared with other classifiers such as neural network

and decision tree (C4.5), SVM is easier to train, needs fewer

training samples and has better generalization ability.

Considering the limited number of training sample, we

use SVM classifier in our work.

SVM was proposed by Vapnik [21] and obtained

excellent results in various data classification tasks in recent

years especially in two-class problems [22,23], including

text detection [13]. Traditional classification techniques use

empirical risk minimization and lack a solid mathematical

justification. The SVM classifier uses the structural risk

minimization to find the hyperplane that optimally separates

two classes of objects. The kernel function of SVM is a

second polynomial for its better performance than other

kernels in this task.

The SVM was trained on a dataset consisting of 3200 text

and 8000 nontext labeled samples. Fig. 10 shows some of

the training examples. As stated in [22,23], although

positive samples are easy to be obtained, it is more difficult

to get representative negative samples since they span a vast

space. Then, after obtaining a trained model, a ‘bootstrap’

process (as shown in Fig. 1) is used to improve the

performance of the classifier. False alarms will be added

into the nontext set for re-training.
(a) the text data (b) nontext data.

er fine detection and (c) the result after multiscale (direction) integration.



Fig. 12. Illustration of the overlap of a ground truth box and detection result.
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Fig. 11 shows an example of coarse and fine detection

results. It can be seen that false alarms are reduced in the

fine classification process (Fig. 11(b)).

4.4. Multiscale (orientation) merging

Sometimes, a text line can be detected in more than one

orientation or scale and the detection results overlap in the

original image (Fig. 11(b) is an example). When the

overlapped area of two candidates is larger than half area

of either of them, a candidate should be deleted. If a text line

is detected in two orientations, the one with larger width is

kept. If a text line is detected in two scales, the one with

larger probability to be text is kept. The probability of a

candidate to be text is obtained in the SVM classification

process as the method in [24]. Fig. 11(c) shows the result

after multiscale (orientation) merging (Fig. 12).
5. Experimental results

Two testsets are used for experiments. One is our Lab

testset containing 177 images from Webs, broadcast videos

frames and images captured by digital camera. The other is

Microsoft common testset containing 44 images [25]. All of

the video frames in test have a size of 400!328 pixels.
Fig. 14. Images with failures and false alarms. (a–c) Example

Fig. 13. Examples of detected text lin
The testsets consist of a variety of cases, including text in

different font-size, font-color, directions and languages,

light text on dark background, text on textured background,

text of poor quality, etc.

The proposed method performs robust on a majority of

the test images. Fig. 13 illustrates some examples of the

detected text lines. It can be seen from the results that most

of the text is well detected despite of large and small font-

size, colors and languages. The results show that even in a

cluttered background, the proposed method can work well

for overlay text and frontal scene text.

Fig. 14 illustrates some failure examples. An isolated

character ‘2’ in Fig. 14(a) is not detected for the reason that

it does not construct a text line and then does not have the

text texture property. Two text lines are missed in Fig. 14(b)

because the large affine distortion makes the text outline

non-rectangle. A text line of quite small font-size is missed

in Fig. 14(c). In the experiments, we find that text whose

height is smaller than 9 pixels is prone to be missed. If a text

string contains less than two characters, it is probably to be

missed. Since most of the text has a height larger than 10

pixels and contains more than two characters, this failure is

trivial in practice. In Fig. 14(d), there is a man-made

structure falsely detected as text line but we can see that it

has all the properties as text, including contrast with

background and texture properties. Other man-made

structures such as building windows, guardrails, etc. are

also prone to be falsely detected as text lines. We predict

that these false alarms can be eliminated by the feedback

from OCR result (like the recognition rate and repetition

rate of characters) in the future work.

Based on the idea of performance evaluation in [26], we

define the following simple criteria to evaluate the text
s containing missed text and (d) contains a false alarm.

es in images and video frames.



Table 4

Performance comparison of features

Features Accuracy (%)

Features used in this paper 96.8

Wavelet moment features used in [12] 93.2

Gradient features used in [6] 94.5

Table 3

Performance comparison of three algorithms

Recall rate

(%)

False alarm rate

(%)

Speed

(images/s)

Our algorithm 94.2 2.4 8.3

Algorithm [12] 91.4 5.6 1.5

Algorithm [6] 94.3 8.1 2.2
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detection results

dðr; g; oÞ Z
1 if o=gO0:95 and o=r 0:75

0 else

(
(13)

where r, g and o represent the detected text rectangle area,

the ground truth area and their overlap area, respectively (as

shown in Fig. 12. d(r, g, o)Z1 means that a text line is

correctly detected and d(r, g, o)Z0 missed. In (13),

o/g>0.95 and o/r>0.75 means that the overlap area covers

more than 95% ground truth box and more than 75%

detected rectangle. If o covers no text pixels, a false alarm is

produced.

Ground truth is marked by hand from the testsets. There

are totally 689 text lines marked in the two testsets for

performance evaluation. Given the marked ground truth and

detected result by the algorithm, we can automatically

calculate the recall and false alarm rate by

Recall Z
Number of correctly detected text

Number of text
; (14)

False alarm rate Z
Number of falsely detected text

Number of detected text
: (15)

As listed in Table 2, 94.2% recall rate and 2.3% false alarm

rate are reported on our lab testset. 94.1% recall rate and

2.4% false alarm rate are reported on Microsoft testset. The

large decrease of false alarm rate from the coarse to fine

detection (Table 2) shows the validity of the selected

features and SVM-based classification.

The method has an average detection speed of more than

8 images per second on a Pentium IV 1.6G CPU, which

means that video text can be detected in real time by

sampling several frames per second (supposing that video

text will last at least 20 frames to be seen clearly).

In order to provide an idea about the quality of these

results, experiments are done on Microsoft common testset

to compare the proposed method with two representative

methods that are implemented according to [6,12]. It can be

seen (Table 3) that our method is faster. Both the recall rate

and false alarm rate perform better than that of [12].

Although the recall rate is a little bit lower than that of [6],

the false alarm rate (2.4%) is much lower than the method.

To show the advantage of the selected feature set, we

compare this feature set with features used in [6,12] by an
Table 2

Performance of coarse and fine detection

Recall rate (%) False alarm rate (%)

Coarse detection 97.4a 10.1a

97.2b 11.5b

Fine detection 94.2a 2.3a

94.1b 2.4b

a The result on our testset.
b The result on Microsoft common testset.
SVM classifier. Comparison results (Table 4) show that

the features used in this paper work better than the wavelet

moment features and gradient features. This also shows that

the feature combination and selection in this paper is

effective.

Experiments are done to compare SVM with decision

tree (C4.5) and B-P Neural Network (BPNN). The reason

why C4.5 and Neural Network are selected for comparison

is that they succeed in lots of classification tasks in recent

years and both of them use a ‘decision boundaries’ to solve a

binary-classification problem [20] just as SVM classifier

does. Classification accuracy is set as the criteria to evaluate

the classifiers. It can be seen in Fig. 15 that SVM performs

better than C4.5 on all of the training sets. The performance

of BPNN exceeds the SVMs when the number of training

text/nontext is larger than 1600/4000, but the performance

of SVM is much better than BPNN when the training set is

relatively small. This proves that SVM has the best

generalization ability in the three compared classifiers in

terms of this problem. SVM is suitable for the text/nontext

classification problem when it is hard to get a large number

of representative training examples.

In tested images, there is text in different languages

including Chinese, English, etc. The Chinese text can

represent Eastern languages such as Japanese, Korean, etc.
Fig. 15. Performance comparison of classifiers.



Table 5

Performance comparison on different languages

Recall rate (%) False alarm rate (%)

Chinese text 94.0 2.4

English text 94.3 2.4

Combining text 94.2 2.4
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and the English can represent Western language such as

French, German, etc. The recall rate for Chinese and English

texts are 94.0% and 94.3%, respectively (Table 5). This

shows that our algorithm is insensitive to both Western and

Eastern languages. Whereas, performance on English-like

Western languages is better because their intensity variety is

denser than that of Chinese-like Eastern languages. Further-

more, texture property of English-like text is more distinct

because it is commonly made up of limited characters.
6. Conclusions and future work

A new algorithm for detecting text in images and video

frames is presented in this paper. The coarse-to-fine detection

framework makes the calculation faster compared with

previous text detection method in uncompressed domain.

The high detection speed will benefit real applications. For

example, it will make the text detection really helpful for fast

Web content analysis by providing text information in Web

images. It will also benefit the real-time video content

analysis. The feature selection procedure finds effective

texture features to represent the text pattern. The combi-

nation of energy, structural and texture properties make the

method a truly robust one. The low false alarms rate will

ensure the method provide more accurate information for real

applications. To the best of our knowledge, this is the first

work to compare the text detection performance on different

languages. The detection algorithm obtains single-line text

instead of text regions containing multi-line text, which will

benefit the text recognition in the future work. Although the

algorithm is designed mainly for detecting overlay text in

images and video frames, it can work properly for most of the

frontal scene text.

Currently, we only provide a text detection method. Text

should be clearly extracted from its background to obtain a

good recognition result for the characters. Temporal

information can be used to enhance the quality of video

text as in [26–28]. Special technique should be investigated

to segment the characters from their background before

putting them into an OCR software in the future work as in

[29–31]. Domain knowledge [32] should also be integrated

into the detection and recognition tasks.
Acknowledgements

The authors would like to thank Dr Shuqiang Jiang

for his advice on editing this manuscript and
the anonymous reviewers for their constructive comments.

This work is partly supported by National Hi-Tech

Development Programs of China under grant No.

2003AA142140 and NEC-JDL Context-based Multimedia

Analysis and Retrieval Program.
References

[1] K. Sobottka, H. Bunke, H. Kronenberg, Identification of text on

colored book and journal covers, International Conference on

Document Analysis and Recognition 1999; 57–63.

[2] Y. Zhong, H.J. Zhang, A.K. Jain, Automatic caption localization in

compressed video, IEEE Transactions on PAMI 22 (2000) 385–392.

[3] M.A. Smith, T. Kanade, Video skimming for quick browsing based on

audio and image characterization, Carnegie Mellon University,

Pittsburgh, PA, Technical Report CMU-CS-95-186, July, 1995.

[4] T. Sato, T. Kanade, E.K. Hughes, M.A. Smith, Video ocr for digital

news archives, IEEE Workshop on Content Based Access of Image

and Video Databases, Bombay, January 1998;.

[5] V. Wu, R. Manmatha, E.M. Riseman, Textfinder: an automatic system

to detect and recognize text in images, IEEE Transactions on PAMI

20 (1999) 1224–1229.

[6] R. Lienhart, A. Wernicke, Localizing and segmenting text in images

and videos, IEEE Transactions on Circuits and Systems for Video

Technology 12 (2002) 256–268.

[7] D.T. Chen, H. Bourlard, J.-P. Thiran, Text identification in complex

background using SVM, International Conference on Computer

Vision and Pattern Recognition 2001; 621–626.

[8] Q. Ye, W. Gao, W. Wang, W. Zeng, A robust text detection algorithm

in images and video frames, Joint Conference of Fourth International

Conference on Information Communications and Signal Processing

and Pacific-Rim Conference on Multimedia, Singapore 2003;.

[9] A.K. Jain, B. Yu, Automatic text location in images and video frames,

Pattern Recognition 31 (1998) 2055–2076.

[10] Y. Zhong, K. Karu, A.K. Jain, Locating text in complex color images,

Pattern Recognition 28 (1995) 1523–1535.

[11] H. Li, D. Doermann, O. Kia, Automatic text detection and tracking in

digital video, Maryland University LAMP Technical Report 028, 1998.

[12] H. Li, D. Doermann, O. Kia, Automatic text detection and tracking in

digital video, IEEE Transactions on Image Processing 9 (2000) 147–156.

[13] K.I. Kim, K. Jung, H. Kim, Texture-based approach for text detection

in images using support vector machines and continuously adaptive

mean shift algorithm, IEEE Transactions on PAMI 25 (2003) 1631–

1639.

[14] X. Tang, X.B. Gao, J. Liu, H. Zhang, Spatial-temporal approach for

video caption detection and recognition, IEEE Transactions on Neural

Networks 13 (2002) 961–971.

[15] B. Luo, X. Tang, J. Liu, H. Zhang, Video caption detection and

extraction using temporal feature vector, International Conference on

Image Processing, Spain, September 2003; 297–300.

[16] S.G. Mallat, A theory for multiresolution signal decomposition: the

wavelet representation, IEEE Transactions on PAMI 11 (1989) 674–

693.

[17] I. Daubechies, Orthonormal bases of compactly supported wavelets,

Communications on Pure and Applied Mathematics 41 (1988) 909–

996.

[18] G.V. Wouwer, Wavelets for multiscale texture analysis, PhD Thesis,

University of Antwerpen Belgium, 1998, pp. 43–56.

[19] B. Furht, Video and image Processing in Multimedia Systems, Kluwer

Academic Publishers, 1995, pp. 226–270.

[20] A.K. Jain, Statistical pattern recognition: a review, IEEE Transactions

on PAMI 2 (2001) 4–37.

[21] V. Vapnik, The Nature of Statistical Learning. Theory, Springer, New

York, 1995.



Q. Ye et al. / Image and Vision Computing 23 (2005) 565–576576
[22] K. Sung, T. Poggio, Example-based learning for view-based human

face detection, Massachusetts Institute of Technology, Cambridge,

MA, A.I. Memo 1521, 1994.

[23] B. Heisele, T. Serre, S. Mukherjee, T. Paggio, Feature reduction and

hierarchy of classifiers for fast object detection in video images,

International Conference on Computer Vision and Pattern Recog-

nition 2001; 18–24.

[24] T.F. Wu, C.J. Lin, R.C. Weng, Probability estimates for multi-class

classification by pairwise coupling, Journal of Machine Learning

Research 2001; 975–1005.

[25] X.S. Hua, W.Y. Liu, H.J. Zhang, An automatic performance evaluation

protocol for video text detection algorithms, IEEE Transactions on

Circuits and Systems for Video Technology 14 (2004) 498–507.

[26] H. Li, D. Doermann, Text enhancement in digital video using multiple

frame integration, ACM Multimedia 1999; 385–395.

[27] H. Li, O. Kia, D. Doermann, Text enhancement in digital videos,

Proceedings of SPIE99-Document Recognition and Retrieval 1999.
[28] X.S. Hua, P. Yin, H. Zhang, Efficient video text recognition using

multiple frame integration, International Conference on Image

Processing, New York, September 2002; 22–25.

[29] D. Chen, J.-M. Odobez, H. Bourlard, Text segmentation and

recognition in complex background based on Markov random field,

Proceedings of the International Conference on Pattern Recognition,

April 2002; 227–230.

[30] T. Sato, T. Kanade, E.K. Jughes, M.A. Smith, S. Satoh, Video OCR:

indexing digital news libraries by recognition of superimposed

captions, ACM Multimedia Systems: Special Issue on Video Libraries

7 (1999) 385–395.

[31] Q.X. Ye, W. Gao, Q.M. Huang, Automatic text segmentation from

complex background, IEEE International Conference on Image

Processing, Singapore, October 2004; 2305–2308.

[32] D.Q. Zhang, S.F. Chang, A Bayesian framework for fusing multiple

word knowledge models in videotext recognition, International

Conference on Computer Vision and Pattern Recognition 2003.


	Fast and robust text detection in images and video frames
	Introduction
	Related works
	Coarse detection
	Multiscale wavelet decomposition
	Candidate text pixels detection
	Density-based region growing
	Getting candidate text lines

	Fine detection
	Feature extraction in suitable scale
	Feature selection
	Training and classification
	Multiscale (orientation) merging

	Experimental results
	Conclusions and future work
	Acknowledgements
	References


