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Pedestrian Detection in Video Images via Error
Correcting Output Code Classification
of Manifold Subclasses

Qixiang Ye, Member, IEEE, Jixiang Liang, and Jianbin Jiao, Member, IEEE

Abstract—Pedestrian detection in images and video frames is
challenged by the view and posture problem. In this paper, we
propose a new pedestrian detection approach by error correcting
output code (ECOC) classification of manifold subclasses. The
motivation is that pedestrians across views and postures form
a manifold and that the ECOC method constructs a nonlinear
classification boundary that can discriminate the manifold from
negative samples. The pedestrian manifold is first constructed
with a local linear embedding algorithm and then divided into
subclasses with a K -means clustering algorithm. The neighboring
relationships of these subclasses are used to make the encoding
rule for ECOCs, which we use to train multiple base classifiers
with histogram of oriented gradient features and linear support
vector machines. In the detection procedure, image windows are
tested with all base classifiers, and their output codes are fed into
an ECOC decoding procedure to decide whether it is a pedestrian
or not. Experiments on three data sets show that the results of our
approach improve the state of the art.

Index Terms—Error correcting output code (ECOC), manifold,
pedestrian detection, support vector machine (SVM).

1. INTRODUCTION

ETECTION of pedestrians has attracted considerable at-

tention in a wide variety of applications, such as intel-
ligent video surveillance and pedestrian warning for driving
assistance [1]-[5]. In recent years, the research of pedestrian
detection has achieved some success in video surveillance
systems, where the camera has a fixed viewpoint and captures
a static background. However, pedestrian detection in driving
warning systems is still an open problem because of the moving
camera, complex backgrounds, varied illumination conditions
in outdoor environments, and, in particular, a broad range of
pedestrian views and postures.
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In existing pedestrian detection systems, feature representa-
tion and classifiers are two main problems being investigated.

The computational approach to vision by Maar claims that
the primitives of visual information representation are simple
components of forms and their local properties. Therefore, local
features are most often investigated for pedestrian detection.
These features include Haar-like features [5], histogram of
oriented gradient (HOG), v-HOG features [13], [14], Gabor
filter-based cortex features [15], covariance features [16], local
binary pattern (LBP) features [17], HOG-LBP features [18],
edgelet features [19], shapelet features [20], local receptive field
features [21], multiscale orientation features [35], etc. A recent
survey [3] has shown that, of the proposed features, various
HOG features are most effective for pedestrian detection.

By using local statistics, the HOG features are robust to
complex background and even robust to significant occlusion
when using a part-based model [36]. There are also some
improvements of HOG features for pedestrian detection, such
as the combination with LBP features [18], the extension to
nonrectangle blocks [37], etc. HOG features are also extended
to other applications, such as the facial expression recognition
[38]. In [39], Kamijo et al. use HOG features and a cascade of
classifiers to parallel detect pedestrians in a multiple camera
framework. The usage of multiple cameras can improve the
view range of the system but cannot improve the detection
performance of either the multiview or the multiposture pedes-
trians since when the parallel detection improves the detection
rate, they also bring more false alarms to the system. In this
paper, using HOG features as a representation, we discuss the
problem of how to detect multiview and multiposture pedestri-
ans more effectively; no matter, they are captured by one single
camera or multiple cameras.

The extracted features on labeled samples are usually fed
into a classifier to learn detection models. In the classifiers, the
linear support vector machine (SVM) is the most popular clas-
sifier [13], [26]. Its combination with boost algorithm, such as
MPLBoost [30], demonstrates the state-of-the-art performance.
However, when we need to detect multiview and multiposture
pedestrians in a system, linear SVMs are challenged. It is ob-
served in experiments that pedestrians of continuous view and
posture variation form a manifold, which is difficult to classify
linearly from the negatives. The method requires multiview and
multiposture pedestrians to be correctly classified with a linear
SVM in the training process, often leading to overfitting. Some
nonlinear classification methods such as kernel SVMs [13],
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[31] are options to this problem, but these methods are generally
much more computationally expensive than linear methods. In
addition, selection of a proper kernel for very high dimensional
samples is not a trivial task.

On the other hand, some approaches use a “divide-and-
conquer” strategy to deal with the view and posture problem by
first dividing training positives into subclasses and then training
or designing multiclass models for detection [6]—[9], [23]-[25].
In [9] and [37], tree structure boosting classifiers are developed
to detect multiview pedestrians in images. Although they are
partially successful, as far as classifier learning is concerned,
those methods consider little about the relation among sub-
classes and cannot always reduce both bias and variance of the
learned classification models.

Error correcting output codes (ECOCs) were created as a
general framework to handle multiclass problems [10], [11].
The classification is performed according to a set of binary
ECOCs. By introducing suitable coding rules, ECOCs can
reach a nonlinear classification while reducing both bias and
variance of the learned classification models. In many applica-
tions, the ECOC framework is justified to be simple but more
effective than other multiclass extensions [10]-[12].

In this paper, we formulate the multiview and multiposture
pedestrian detection as a manifold classification problem. The
manifold learning is first employed to cluster the pedestrian
samples into several subclasses, each of which is more compact
than the original class and then can be well modeled with
a linear classifier. Then, the ECOC is used to encode the
relationships among the neighboring subclasses obtained by
manifold learning. One or multiple subclasses together with
the negative class are modeled with a base classifier, and all
base classifiers are integrated by ECOC coding to perform the
final nonlinear classification. To the best of our knowledge, this
is the first time that ECOC classification has been applied to
pedestrian detection. This is also the main difference between
our approach with that of [16]. In [16], extracted pedestrian fea-
tures are transformed into a manifold tangent space of manifold
for classification. The authors reported that classification in the
tangent space can reduce the effect of views and postures.

The contributions of this paper are summarized as follows:
The multiview and multiposture pedestrian detection problem
is converted to a manifold subclass classification problem.
A simple but effective solution is proposed by introducing
manifold-advised ECOC classification.

Training and detection procedures of the proposed pedestrian detection approach.

The remainder of this paper is organized as follows: The
methodology for pedestrian detection is presented in Section II.
Experimental results are provided in Section III, and conclu-
sions are made in Section I'V.

II. METHODOLOGY

In this section, we first present an overview of the proposed
pedestrian detection approach and then describe the feature
representation, the construction of manifold subclasses, and the
ECOC classification in detail.

A. Overview of the Proposed Pedestrian Detection Approach

The proposed pedestrian detection approach contains train-
ing and detection procedures, as shown in Fig. 1. Before either
training or detection, HOG features need to be extracted to
represent pedestrians (see Section II-B). In the training pro-
cedure, we first construct a manifold on which we can divide
the pedestrian samples of different views and postures into sub-
classes using clustering (see Section II-C). These subclasses are
encoded together with negative samples to train base classifiers
with linear SVMs of soft margins (C' = 0.01) [32]. Accord-
ing to the ECOC encoding rules (see Section II-D), M base
classifiers will be trained to form a base classifier set { f,,, (x)},
m=1,..., M, where f,,(z) = Sign(w?, - = +b,,) are SVM
classifiers of normal vector w? and threshold b,,. Adjusting
the value of b,, will balance the classification error rates on
positives and negatives. Hard examples from test images will
be added into the training set to improve the performance of the
detector. The method is then retrained using this augmented set
to produce the final detector. The training procedure is shown
in Fig. 1.

In the detection procedure, a test image is repeatedly reduced
in size by a factor of 1.2, resulting in pyramid images. Then,
sliding windows of multiscales are extracted from each pyramid
image and fed to all the base classifiers, obtaining the binary
ECOCs. These codes will be classified as negative or positive
by an ECOC decoding procedure (see Section II-D).

All image windows classified as positive are integrated into
the original image as detection results. When the overlapping
area of two windows classified as positive exceeds 80%, they
will be merged. The detection procedure is shown in the right
part of Fig. 1.
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B. Pedestrian Representation

HOG features, as proposed by Dalal and Triggs [13], are
kind of state-of-the-art features for pedestrian representation
and are employed as representation in this paper. As shown in
Fig. 2(a), when extracting HOG features, a 64 x 128 training
sample is divided into cells of size 8 x 8 pixels, and each
group of 2 x 2 cells is integrated into a block in a sliding
fashion and blocks overlap with each other. We first calculate
the gradient orientation of each pixel. In each cell, we calculate
nine-dimensional HOG features by calculating the nine-bin
histogram of gradient orientations of all pixels in this cell. Each
block contains four cells, on which 36-dimensional features are
extracted. Each sample is represented by 105 blocks, on which
3780-dimensional HOG features are extracted. Fig. 2(b) shows
the visualization of HOG features.

C. Pedestrian Manifold Construction and Division

A manifold embedding method is used to convert pedestrian
samples from a very high dimensional space to a low dimen-
sional embedded space. Samples in the embedded space are then
divided into subclasses with a K-means clustering algorithm.

Local linear embedding (LLE) is employed to construct
the pedestrian manifold [27]. It computes low dimensional
and neighborhood-preserving embeddings of high dimensional
inputs by mapping them into a global coordinate with lower
dimensionality, as illustrated in Fig. 3. Given n pedestrian sam-
ples {x;},i =1,...,n in the 3780-dimensional input space X,
LLE starts with finding the k£ nearest neighbors, based on the
Euclidean distance, for each vector x;, 1 < ¢ < n;, where n;’s
denote the indices of the k nearest neighbors of sample i. LLE
identifies the optimal local convex combinations of the nearest
neighbors to represent each original sample. This is equivalent
to minimizing the objective as

2
argminz Ti— Z W; ;T4 (1)
Wii jens
where » ., w; ; = 1,w; j > 0. The foregoing objective func-

tion can be solved as a least-square problem. Next, LLE con-
siders an embedded space. Let z; be the embedding of z; in
the embedded space. The embedded space has a dimensional-

HOG feature illustration. (a) Feature extraction and (b) visualization of HOG features for two pedestrian images from different subclasses. The brighter

Fig. 3. Pedestrian manifold. Points of different colors denote samples from
different pedestrian subclasses.

ity d < D. z; is calculated such that the following objective
function is minimized:

2

2

arg min E Zi — E Wi 2
z .
(3

JEN;

Note that the foregoing is equivalent to finding an embedded
space such that local convex representations are preserved. It
can be shown that with some additional conditions, which make
the problem well defined, the task of minimization can be
accomplished by solving a sparse eigenvector problem. More
specifically, the d eigenvectors associated with the d smallest
nonzero eigenvalues provide an ordered set of orthogonal co-
ordinates centered on the origin [27]. d is the dimensionality of
the embedding space. We set d = 3, in which case, the manifold
could be visualized.

It can be seen in Fig. 3 that the manifold is not compact and
nonlinear, which makes it difficult to train a linear classifier
such as a linear SVM to classify pedestrians. We propose to
divide the manifold into subclasses, each of which is more
compact and approximately linear and, therefore, can be better
modeled with a linear SVM classifier.

A standard K-means clustering algorithm is employed to
perform the manifold division. Suppose that there are L sub-
classes on the manifold labeled {1,2,...,L}. The pair-wise
Geodesic distances [27], which are calculated from pair-wise
Euclidian distances, are used as the clustering measure. The
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TABLE 1
CODING MATRIX OF PEDESTRIAN SUBCLASSES AND NEGATIVES

h L 3 fi s fo - Ju

Negatives (0) 0 0 0 0 0 0 ... ..
Sub-class 1 (1) 1 0 0 0 1 0 ... ...
Sub-class 2 2) 0 1 0 0 1 ) I
Sub-class 3 (3) 0 0 1 0 0 1 ...
Sub-class / () 0o 0 0 1 0 0 ...

Sub-classL() O 0 0 1 0 0

sample that has the minimum summarization of Geodesic dis-
tance to all samples uses the subclass center. L is initially set to
2 and then is increased by 1 until the performance is optimized.

The reason for performing clustering on the manifold embed-
ding instead of the original high dimensional feature space is
the curse of dimensionality. Because of the high dimensionality
of the original feature space, samples in such a space are very
sparse, which makes it difficult to perform clustering analysis.
According to the manifold’s property [27], the spatial topology
of samples in the embedded space is an approximation to that of
the original feature space. Therefore, we can divide the samples
by clustering them in the embedded space to avoid the curse of
dimensionality.

D. ECOC Classification of Manifold Subclasses

Suppose that the pedestrian manifold is divided into L sub-
classes; together with a negative class, we have a total of L 4 1
subclasses to be recognized. Consequently, we formulate the
detection problem as a multiclass classification problem.

There are many different approaches to reduce a multiclass
problem to a binary classification problem. The simplest ap-
proach considers the comparison of each class to all the others.
Other research suggests that the comparison of all possible pairs
of all L + 1 classes [10] can be accomplished by solving L(L +
1)/2 binary problems. Dieteerich and Bakiri [28] presented a
framework in which the classification is performed according
to a set of binary ECOCs. The outputs of all the classifiers are
combined for decoding. In [11], the authors justified that the
ECOC framework can reduce both the variance and the bias of
classification models, showing its superiority on the multiclass
problem over the other methods.

ECOC Encoding: For ECOC classification, we need to con-
struct a coding matrix, as shown in Table I. Each row of
the coding matrix defines codes for a positive subclass or the
negative class. Each column defines a partition of subclasses
(coded by 0 or 1 according to its subclass membership). From
the view of learning, the coding matrix is interpreted as a set of
L + 1 binary learning problems: one for each column.

Constructing the coding matrix (ECOC encoding) is not a
trivial task. Empirical and heuristic methods are proposed in the
previous work [10], [28]. In this paper, the manifold subclasses
are encoded in terms of their neighboring relationships on the
manifold, which is called a manifold advised ECOC. If two or
more subclasses are neighboring on the manifold, then they will
be put together as a combined class. Then, there is a column in

For sub-class 1 For the combined class of
sub-class 1 and 2

i1@0quo
0100111
0010010
0001001

Fig. 4. Encoding four subclasses.

which the codes corresponding to these neighboring subclasses
are “1,” and the codes to the other subclasses are “0,” as shown
in Table I. Here, the neighboring relationships of subclasses are
discovered with a nearest neighbor analysis. Two subclasses are
determined to be neighbors if any sample in a subclass is one
of the k nearest neighbors when constructing the manifold.

When training the base classifiers with respect to the coding
matrix, we need to combine the pedestrian samples of neigh-
boring subclasses together to form a positive set

{(@e, fi(@1) sy (@ip, fi(Tap)) -+ oy (igy [i(ig))} (B)

where 7p and ¢q denote the sample indices of two neighboring
subclasses on the manifold. The combined subclasses are put
together with the negative training set, and then, a linear SVM
is employed to learn the base classifier f;(x), j=1...M.
Let {(x;,1;)},i=1,..., N be a set of training samples where
instance z; belongs to the feature space X, and label /; takes
values from a set of subclass labels; we define {C’l}lzoy__w L
as L + 1 distinct codewords, each of which has a length of
M and corresponds to a row in Table I. M base classifiers
{f1(z), fa(x),..., far(x)} need to be trained, each of which
corresponds to a column in Table I. In the training procedure,
if the jth bit of C is 1 (Cy; = 1), then the base classifier f;(z)
outputs 1; otherwise, f;(x) outputs O.

Fig. 4 illustrates the encoding of four neighboring subclasses
on a manifold. According to the neighbor relations of sub-
classes, we can construct the ECOC coding matrix as shown
in the figure. In the coding matrix, the first column contains
one nonzero element corresponding to the row of subclass
1. Therefore, the column is for subclass 1. The fifth column
contains two nonzero elements corresponding to the rows of
subclasses 1 and 2. Therefore, the column is for the combined
class made up of subclasses 1 and 2.

ECOC Decoding: Given a test sample z, the learned base
classifiers can be applied to the sample to compute a binary test
output vector C' = {f1(z),..., far(x)}. Then, we can deter-
mine which codeword Cj is the closest to the test output vector
C using the Hamming distance. This is called ECOC decoding.
In the decoding process, the test sample z is assigned to the
subclass of the smallest Hamming distance, as follows:

M
Hy(x) =|C = Clly = |C1; — f5(2)] )
=1
l(x) = argmin {H;(z)|l =0,1,...,L} (5)
!
Cfo, i) =0
F(z) = { 1, otherwise ©)
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where F'(x) denotes the final classifier, F'(x) =1 denotes a
pedestrian, and F'(z) = 0 denotes a negative.

E. Discussion of ECOC Classification

ECOC classification is a supervised learning method that
applies binary learning algorithms to solve multiclass problems.
Any learning algorithm that can handle two-class problems
could be employed as a base classifier. ECOC classification
can be viewed as a compact form of “voting” among multiple
classifiers. The main advantage of this voting is that the errors
committed by each of the base classifiers are substantially
uncorrelated [28]. When making the ECOC code matrix, each
codeword will be well separated in Hamming space from the
other codewords, and each column should be uncorrelated with
all the other columns. Kong [29] justified that with ECOC, we
can obtain a smaller variance and bias of classification models
than with the other schemes, such as voting of one-versus-rest
classifiers or classifier pairs, etc. Given an effective encoding
rule, ECOC is justified to be a simple but effective classifier
combination scheme compared with the boosting or mixture-
of-expert method.

As previously mentioned, our coding rule encodes neighbor-
ing subclasses on the manifold. Fig. 5 provides an explanation
for the reason for this rule. Fig. 5(a) illustrates the classification
boundaries of voting, and Fig. 5(b) is the illustration of classifi-
cation boundaries of ECOC, which use the coding matrix in the

TABLE II
DATA SETS
Datasets Training samples Test images
/samples
SDL [29] 7550 positives and 258 /1688
5769 negatives
TUD- 1303 positives and 509 /1397
Brussels [30] 5000 negatives from
386 images
INRIA [13] 2478 positives and 288 /589
12180 negatives

Fig. 6. Positive and negative training samples.

table of Fig. 5(c). Subclasses are relaxed to be convex shapes.
The feature space is divided into subspaces, and samples in
these subspaces will be classified into positive (+) or negative
(—) samples, with the ECOC decoding by (4)—(6). For example,
if the base classifiers output is {11010} for the samples in a
subspace, then the samples will be classified to subclass 2 since
the output of base classifiers is closest to {10010} in all of the
codewords {00000, 10010, 10011, 00101}. This analysis can
be extended to all the other subspaces. Consequently, ECOC
with the proposed coding strategy can optimize the classifica-
tion boundary between positives and negatives, as shown in
Fig. 5(b). Finally, we could obtain a nonlinear classification
boundary that can well discriminate the positive manifold from
the negatives.

III. EXPERIMENTAL RESULTS

In this section, we describe the data sets used in our experi-
ments, evaluate the proposed approach on these data sets, and
provide in-depth analysis of the detection results.

A. Data Sets

There are three data sets used in our experiments, as de-
scribed in Table II. One is the System Development Laboratory
of Graduate University of Chinese Academy of Sciences (SDL)
data set with 7550 positives and 5769 negatives for training set
[29] with front/side views and running, sporting, and bicycling
postures. Some of the training examples are shown in Fig. 6.
In the SDL data set, there are 258 images with 1688 samples
for testing, containing multiple views and postures, such as
walking, sporting, running, etc. It is publicly available online
(http://coe.gucas.ac.cn/SDL-HomePage/resource.asp) [29]. The
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Brussels data set, and (d) INRIA data set.

second data set is the Technique University of Darmstadt
(TUD)-Brussels data set, captured from a moving platform for
driving warning systems. The third data set is the INRIA data
set [9], which has been widely used for pedestrian/human de-
tection evaluation in recent years. Samples (2478 positives and
12 180 negatives) selected from 1218 person-free training pho-
tos provide the initial negative set. There are 288 images with
589 multiview and multiposture pedestrian samples for testing.

B. Detection Performance and Comparisons

SDL Data Set: On this data set, the detection performance of
ECOCs under different subclass numbers has been evaluated.
Recall rate and 1.0 precision are used to evaluate the perfor-
mance, and the results are shown in Fig. 7(a). In Table III,
we illustrate the spatial relationships of 2—4-6-8 subclasses
on the manifold and then present the ECOC according to the
neighboring relationships. It can be seen that with an increasing
number of subclass, the neighboring relations become complex,
and then more base classifiers are needed. In Fig. 7(a), it
can be seen that the performance of eight subclasses is much
higher than that of two subclasses, showing that with the
increasing number of subclass, the compactness and linearity
of the subclasses increase, and then, the detection performance
also increases. When the number of subclass increases from
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6 to 8, the performance marginally increases since the number
of training samples in each subclass drops. This also affects
the performance of the trained classifiers. This shows that
both subclass linearity and number of subclasses will affect
the performance of base classifiers, as two opposite factors.
Therefore, a proper number of subclass should experimentally
be selected so that the preceding two factors are balanced.

When evaluating the detection performance, four represen-
tative methods, including HOG+SVM [13], HOG+SVM-+
voting, HOG+HISVM [31], and HOG+MPLBoost (a boosting
method on SVMs) [30], are selected for comparison. In all of
the methods, HOG features are employed, and a sliding window
classification scheme is used for detection. The voting scheme
is a combination of multiple SVM classifiers that are trained
individually. HIKSVM is a kernel SVM method for nonlinear
classification with high efficiency, and MPLBoost is a weighted
voting scheme for combing multiple strong classifiers. Fig. 7(b)
shows that our proposed approach reports a higher performance
on the SDL data set.

TUD-Brussels Data Set: This data set contains video images
from a driving assistant system. The test images are captured
video frames from a driving scene with cluttered background
and are of walking and bicycling postures. In Fig. 7(c), we
compare our approach (with six subclasses) with the afore-
mentioned methods. It can be seen that the proposed approach
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TABLE III
ECOC CODING MATRIX EXAMPLE

Base ECOCs
classifier
number

3 011
101

Sub-classes
on manifold

1000100
0100111
0010010
0001001

15 100000100000000
010000111100011
001000010010010
000100001011011
000010000101101
000001000000100

21 100000001000000000000
010000001111000000000
001000000101111001000
000100000000101110000
000010000000011011110
000001000000000000011
000000100011000001101
000000010000000100000

5 39, V7

»
S
ot

outperforms the other detection methods. In Fig. 7(c), when the
precision is 0.5, the highest recall rate is about 60% reported by
our approach.

INRIA Data Set: This data set is popular for pedes-
trian detection evaluation and uses a miss rate and false
positives per window (FPPW) criteria. In Fig. 7(d), we
compare our approach (with four subclasses) with sev-
eral state-of-the-art approaches, including HOG+SVM [13],
COV-+Manifold+Logiboost [16], and partially least square
(PLS) analysis [22]. While we are able to run the implemen-
tation for the method [13], curves for methods [16], [22] are
obtained from their reported results using the same training
samples and test images in comparison. When the training set is
small, it is observed that the case of four subclasses reports the
best performance. As shown in Fig. 7(d), our approach reports
the best results on the data set. Compared with the FPPW rate
of 10~%, it has a 4% miss rate, which is about 6% lower than
HOG+SVM and 3% lower than COV+Manifold+Logiboost.
When the FPPW is 1079, it can be seen that the miss rate
of our approach is also lower than the other three methods,
whereas it is a little higher than PLS analysis, which uses
more powerful feature representation and performs a feature
dimension reduction operation before classification.

It is observed that when test samples, such as samples of
SDL and TUD-Brussels data sets, contain more view and
posture variation, the advantages of our approach become more
obvious. When the test samples are near frontal view with little
posture variation, our approach has small advantage over the
classic SVM+HOG method.

Cascaded Adaboost  SyVM
W -b?—b Yes
NoV¥ NoVv No No

Test
window

Fig. 8. Speed up detection with the coarse-to-fine base classifier.
TABLE IV
COMPRISE OF DROP OF DETECTION RATE AND DETECTION SPEED
Cascade number Speed images/seconds  Drop of
detection rate
0 0.13 0
5 1.4 2.4%
10 4.7 3.1%
20 12.9 5.6%
27 26.3 7.2%

C. Detection Speed

Given D dimensional feature vectors, the time complexity of
a linear SVM classification is O(D). It needs an inner product
operation between a feature vector and the norm vector. The
time complexity of a kernel SVM is O(S - D), where S is the
number of support vectors. This means that we need .S inner
product operations between the feature vector and the support
vectors. The time complexity of our ECOC+SVMis O(M - D)
by multiplying the sample feature vector with M linear SVMs.
It can be seen that the time complexity of ECOC+SVM is much
lower than that of kernel SVMs because M < S and higher
than that of linear SVMs.

In our proposed approach, the detection speed linearly de-
creases with an increasing number of base classifier. For exam-
ple, when there are six subclasses and 15 base classifiers, the
detection speed is averagely 0.13 images/s on images of 640 x
480 pixels with an Intel Core-2 2.8-GHz CPU. When the image
resolution is reduced to 320 x 240 pixels, the detection speed
rises to about 1.0 image/s. It should be mentioned that many of
the state-of-the-art methods with linear/kernel SVMs are also
far from real time. The speed of HOG+SVM on images of
640 x 480 pixels is about 1.2 images/s. In addition, the reported
speed of the HIKSVM method is five to six times slower than
that of linear SVM [31].

There are two ways to speed up our current detection ap-
proach. One is to speed up the base classifiers by a cascaded
classification, and the other is to use parallel processing (see
Fig. 8).

As the overall detection speed is proportional to the speed
of the base classifiers, we propose to use a coarse-to-fine base
classifier scheme to speed up the detection. The well-known
cascaded Adaboost classifiers on absolute Haar-like features
[5] are employed as coarse classifiers, and the SVM on HOG
is employed as a fine classifier, which is to construct coarse-
to-fine base classifiers. Using this scheme, most of the image
windows are rejected in the coarse classification. It is reported
in Table IV that when five cascades of Adaboost classifiers
are used, the detection speed raises from 0.13 to 1.4 images/s,
but the recall rate drops to about 2.4%. It can also be seen in
Table IV that a 4.7-images/s detection speed is reported at the
cost of 3.1% detection rate. This speed can be improved to real
time with a further drop in recall rate.
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Fig. 9. Detection examples. Detected false positives are marked with rectangle of white dash line, and missed positives are marked with rectangle composed of

a black dashed line.

On the other hand, since each of the base classifiers can run
separately in each classification, the parallel-processing-based
code optimization can be used to improve the detection speed
in practical application systems. Details of parallel processing
and code optimization are not within the scope of this paper.

D. Detection Examples

In Fig. 9, we show some detection examples. From
Fig. 9(a)~(m), most pedestrians are correctly located with few
false positives. In Fig. 9(e), there is a missed positive (marked
with dash black rectangle) since the pedestrian is too close to
the image boundary. In Fig. 9(m), a squatting pedestrian is
missed. The current method can cope with postures of near-
standing pedestrians and not the seated or squatting pedestrians.
In Fig. 9(g), (k), and (1), there is one false positive in each
image, which is caused by a tree trunk, buildings, and cloth

texture, respectively. In our experiments, we found that objects
with complex texture may falsely be detected because of their
similarity to pedestrians.

In Fig. 10, we show detection examples of successive video
images. The video is captured from a moving platform with
dynamic background. It could be seen that the detection result
is quite stable. The pedestrians with views and postures are
correctly detected in successive video images with few false
positives from the cluttered background, showing the potential
application of the proposed approach to driver warning systems.

IV. CONCLUSION

Although view/posture robustness of object detection in im-
age and video frames is very important to practical applications,
particularly for driving warning systems, it is still an open
problem. In this paper, we have proposed a new approach to this
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Image 357-2

Image 359-2

Image360-2

Fig. 10. Detection examples of successive video frames from TUD-Brussels data set.

problem through a manifold-based clustering strategy and an
ECOC classification method. The new concepts and techniques
proposed in this paper include the pedestrian manifold, the
detailed classification and analysis of multiview and multipos-
ture pedestrian patterns, and the ECOC classifier for pedestrian
detection. Detailed experiments and comparisons are reported,
confirming that our method is capable of handling multiview
and multiposture pedestrians effectively.

ECOC-based classification is a framework to multiclassifier
combination. Other leading classification methods, such as
Kernel or Li-norm SVMs [33], can be integrated into the
framework as base classifiers. It is also reasonable to extend the
proposed approach to multiview objects like faces and vehicles.

A limitation of the proposed approach is that only image
cue is used. Other cues, such as infrared [34] or laser [40],
should be investigated in the future work. Another limitation
is that the efficiency of the proposed approach cannot feed
the requirement of some practical applications. At present,
we propose to use cascaded base classifiers to improve the
detection speed at the cost of some drop of detection rate. More
sophisticated techniques should be employed to further improve
the detection speed in the future work.
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