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Abstract—Trajectory clustering in crowded video scenes is
very challenging. In this paper, we propose to use a belief based
correlated topic model (BCTM) to learn discriminative middle
level features for trajectory clustering. By constructing a scene
prior based joint Gaussian distribution, the BCTM can uncover
relations between trajectory clusters and the middle level features
using a parameter estimation procedure. The method has distinct
advantages over Correlated Topic Model (CTM) and Random
Field Topic (RFT) model previously proposed. The inputs to
the BCTM are either full trajectories or trajectory fragments
obtained with an existing tracking algorithm. The output BCTM
features are input to a hierarchical clustering algorithm to
obtain trajectory clusters. Experiments on three benchmark
datasets show that the proposed BCTM and trajectory clustering
approach improves the state of the art.

I. INTRODUCTION

Trajectory clustering is a video analysis task whose goal
is to assign individual trajectories with common cluster labels,
with applications in activity surveillance, traffic flow estima-
tion and emergency response [1], [2].

A straightforward way to do trajectory clustering is to
use low level feature classification. A set of features, i.e.,
coordinates, velocities and/or geometrical shapes, are extract-
ed to represent trajectories, and then unsupervised learning
methods or inference methods are used to classify these
features [1], [3], [4]. However, in crowded video scenes, it
is often difficult to obtain complete trajectories with off-the-
shelf tracking methods [5]. In most cases, incomplete short
trajectories with noise are obtained, which are difficult to use
in low level feature based trajectory clustering and analysis.

In recent years, middle level feature based trajectory anal-
ysis and clustering approaches have attracted attentions. In
surveillance videos of crowded scenes, middle level features
are usually observed as dominant paths of objects, which
provide a reasonable representation of incomplete trajectories
in low dimensional feature space [6]. With these middle
level features, the cluster information of trajectories is more
intuitive, and the correspondence between the features and
their clusters can be better modeled.

Middle level features for trajectory clustering can be
learned with non-Bayesian approaches, for example, similarity
clustering [7], dimension reduction [8] or online cluster update
[9]. In [7], Wang et al. defined two Euclidean similarity mea-
sures, and trajectories are clustered on the defined measures.
In [8], Hu et al. introduced a dimensional spectral clustering
method, trajectories are projected to a lower space through
eigenvalue factorization, and clustered in the lower sub-space
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Fig. 1. (a) and (b) are two trajectory clusters. (c), (d), (e), (f) are four learned
topics. It can be seen that the topics are not consistent with clusters. Topics
can be shared with clusters, and clusters can also be shared with topics.

with a k-means algorithm. In [9], Hu et al. proposed an
online cluster updating approach with a fuzzy k-means for
online trajectory clustering. Despite the simplicity of the above
approaches, however, they often require long and complete
trajectories as input. In addition, it is difficult to include scene
priors with clustering models.

Recently, hierarchical latent variable Bayesian models,
such as latent Dirichlet allocation (LDA) [10] and hierarchical
Dirichlet process (HDP) [11], have been widely explored in
trajectory analysis and clustering [2], [12], [13], [14]. These
models were adopted from the literature classification and are
well known as “topic models”. They often have hierarchical
structures, and the latent variables tie the different levels. With
LDA or HDP models, trajectories are treated as documents
and object observations of trajectories are treated as visual
words. In our case, learned topics correspond to the middle
level features of trajectories.

In [13], Wang et al. proposed to perform trajectory clus-
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tering using a mixture of latent Dirichlet allocation (LDA)
models, which enables trajectories to share different Dirichlet
distributions. In [12], [14], Wang et al. proposed a dual
hierarchical Dirichlet process (Dual-HDP) model and a dy-
namic dual hierarchical Dirichlet process (DDual-HDP) for
trajectory clustering. Dual-HDP would co-cluster the words
and documents with automatically decided topics. The DDual-
HDP model is the extension of Dual-HDP to incorporate online
learning. In [2], Zhou et al. proposed a Random Field Topic
(RFT) model to perform trajectory clustering in crowded video
scenes. The RFT model advances the LDA and HDP models,
by integrating belief priors and using a Markov random field
(MRF) based minimum spanning tree algorithm. In Zhou’s
approach, the learned topics (middle level features) are called
semantic regions. The performance of trajectory clustering is
significantly improved over LDA and HDP models, however,
problems remain. Existing approaches usually depend on the
topic information, and can not completely regularize topics for
clusters, even with belief priors. This can drop the clustering
performance in crowded scenes, where trajectory topics could
be correlated. This occurs, for example, when topics are
shared with different clusters, and clusters are also shared with
different topics, as illustrated in Fig. 1.

To model the correlated topics and clusters, a correlated
topic model (CTM) [15] is proposed to eliminate the inde-
pendent assumption of topics with a Gaussian distribution. In
[16], Rodriguez et al. proposed to use CTM to extract middle
level features and perform large scale crowd behavior analysis.
However, as CTM can not create discriminative middle level
features for different clusters, these approaches often require a
combination of the middle level features with some low level
features.

In this paper, a scene prior belief based correlated topic
model (BCTM) is proposed to learn discriminative middle
level features (topics) for trajectory clustering. The use of prior
belief is based on the observation that most moving objects
have a clear indication about where they come from (sources)
and where they want to go (sinks). Beliefs are set as sources
and sinks of objects. Considering that even with the beliefs, the
trajectory clusters are often not completely consistent with the
topics [17], we propose to construct a scene prior based joint
Gaussian distribution over the topics, and use the covariance
to reflect the relations between topics and clusters.

For trajectory clustering, a KLT tracker [18] is employed
to get “trajectory fragments”. A Markov random field (MRF)
based spanning tree [2] is used to link the fragments into
trees to capture initial cluster information. The middle level
features are then extracted by the proposed BCTM. On the
learned middle level features, we use a hierarchical clustering
algorithm to get trajectory clusters.

II. BELIEF BASED CORRELATED TOPIC MODEL

This section presents the BCTM, and processes the tra-
jectory middle level feature extraction with BCTM parameter
estimation.

A. Correlated Topic Model

To make the paper self-contained, we first review the CTM.
Fig. 2(a) shows the graphical representation of CTM [15]. The

four important notations about CTM are corpus, document,
topic and word, which correspond to path, trajectory, topic and
visual word. For simplicity, we omit subscripts of parameters
and variables in Fig. 2. M denotes the number of documents.
η is assumed to follow a joint Gaussian distribution N (μ,Σ).
N denotes the number of words for each document. z is
a latent variable being assumed to follow a parameterized
multinomial distribution Mult(f(η)). The function f discretizes
the continuous variable η so that f(η) can be a valid parameter
in the multinomial distribution. x denotes words and β denotes
hyper-paramerers.
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Fig. 2. (a) and (b) are the graphical representations of CTM and BCTM
without subscripts. (c) and (d) are the graphical representations of BCTM and
approximate graph model of BCTM with subscripts.

B. Belief Correlated Topic Model

In Fig. 2(b), it can be seen that words with partially
observed beliefs are inputs for the BCTM. h and m are
binary s dimensional vectors, and s is the number of beliefs.
For convenience and efficiency, we create the visual words
with tracked coordinates and velocities of objects. The detail
of the creation of visual words is described in Section III.
In Fig. 2(b), it can be seen that the observation of a visual
word has four variables (x, h, m, z), where x is a visual
word, h and m are the labels of beliefs of x, and z is a
latent variable indicating x’s topics. h or m are observed
if the trajectories start or end within the annotated belief
areas in Fig. 4. Otherwise, they are inferred. The distribution
of a trajectory is specified by η. β, δ and κ are hyper-
parameters for multinomial distributions of words and beliefs,
respectively. According to Fig. 2(c), which is the BCTM
graph representation with subscripts, the joint distribution is

p({(xji, hji,mji, zji)}, {ηj}|Σ, μ, β, δ, κ)
=

∏
j p(ηj |Σ, μ)[

∏
j,i p(zji|f(ηj))p(xji|βzji)

p(hji|δzji)p(mji|κzji)],
(1)

where j, i are indices of documents (trajectories) and visual
words, ηj is a continuous variable sampled from a multivariate
Gaussian distribution p (ηj |μ,Σ), and xji, hji, mji are dis-
crete variables sampled from discrete distributions p

(
xji|βzji

)
,

p
(
hji|δzji

)
, p

(
mji|κzji

)
, respectively.

C. Parameter Estimation for Middle Level Feature Extraction

Middle level features are extracted through parameter esti-
mation using BCTM. The common way to estimate parameters
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in a graph model is to iteratively maximize the posterior
likelihood. The log posterior likelihood of BCTM is given by

log[p(xji, hji,mji|Σ, μ, β, δ, κ)]

= log{
∫

[
∑

zji

p(ηj , zji, xji, hji,mji|Σ, μ, β, δ, κ)]dηj}. (2)

However, the log posterior likelihood in (2) is intractable
[15]. A variational breaking method [19] is employed to do
the approximation with a graph model shown in Fig. 2(d).
In the approximate graph model, the conditional dependence
between xji and hji, and ηj and zji are eliminated. zji is
conditioned on a new variable φki, which is independent of ηj .
λ and ν2 are the means and covariance of the joint Gaussian
distribution. The subscript k denotes the number of topics,
and each document has a φ. The gap between the true and
approximate log posterior likelihood is the KL divergence. The
approximate is shown in (3).

L = Eq[log p(ηj |Σ, μ)]
+Eq(log p(zji|ηj)) + Eq[log p(xji|zji, β)]
+Eq[log p(hji|zji, δ)] + Eq[log p(mji|zji, κ)]
−Eq[log q(ηj)] − Eq[log q(zji)].

(3)

We iteratively maximize L(•) by computing the derivatives
of L(•) with respect to different variables and parameters.
This step iteratively minimizes the KL divergence between
the true and approximated posterior likelihood. For details of
computation, please refer to [15]. We give modified parameters
and variables as

φki ∝ exp(λj) ∗ βki ∗ δki ∗ κki, (4)
βk ∝ Σ

i
φkin

x
i , (5)

κk ∝ Σ
i
φkin

h
i , (6)

δk ∝ Σ
i
φkin

m
i , (7)

where nx
i , nh

i and nm
i denote the word count, belief (source

and sink) count, respectively. φki denotes the ith word k topic
probability. βk, κk and δk denote the kth topic (middle level
feature) representation in the word space, belief (source and
sink) space, respectively.

It can be seen that β contains the middle level features.
According to (5), it is proportional to φ and nx, and φ is
proportional to λ, β, δ and κ. That means the words with
different beliefs have different φ. Therefore, the middle level
features β learned by BCTM are more discriminative than
those learned by CTM, where φ is only proportional to λ and
β.

It is noted that the mean parameters λ will be iteratively
optimized by the covariance Σ of the Gaussian distribution. It
is not enough however to indirectly utilize the covariance for
trajectory clustering. CTM can also construct the covariance
with a Gaussian distribution, but without discriminative middle
level features (topics), the covariance can not reflect the right
relations between clusters and middle level features. The LDA
based RFT model [2] integrates the belief to learn discrimi-
native middle level features, however it also assumes that the
middle level features are independent to each other. In contrast,
our proposed BCTM can not only construct the covariance
among the middle level features, but also get discriminative
features. It is important to the following hierarchical clustering
algorithm.
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Fig. 3. Flowchart of trajectory clustering.

III. HIERARCHICAL TRAJECTORY CLUSTERING

In this section we describe how the trajectories in crowded
videos are clustered, as shown in the flowchart of Fig. 3.

As discussed above, the topic labels are not consistent
with the cluster labels. Therefore, there are over-segmented
and under-segmented topics (middle level features) after the
model estimation and inference procedure. An over-segmented
topic implies that the topic shares a cluster with other topics
and an under-segmented topic implies that the topic is shared
with multiple clusters. A topic could be simultaneously under-
segmented and over-segmented with respect to different clus-
ters. In the hierarchical clustering algorithm, the objective is to
merge multiple over-segmented topics into one cluster, as well
as split each under-segmented topic into multiple clusters.

We first use a KLT tracker [18] to calculate trajectory
segments and motion vectors of objects, and automatically
identify the belief areas as shown in Fig. 4, referring to [20].
In order to get belief labels and the initial clusters, trajectory
segments are converted into trajectory trees by a spanning
tree algorithm [2]. The trees are then used to extracted visual
words, which are input to the BCTM for middle level feature
extraction. In the middle level feature extraction procedure,
topic probabilities of trees in the topic space are computed.
Given K topics, each tree has K corresponding probabilities.
The topic label of the largest probability is assigned to the
tree. After this step, each trajectory segment has an initial topic
label. The topics of initial labels with covariance matrix will
be input to a hierarchical clustering algorithm to acquire two
cluster labels after topics being merged and split, respectively.

To extract visual words (low level features) of trajec-
tory trees, we construct a codebook for each video scene.
We divide the scene image into cells of 10*10 pixels, and
quantize the velocity of each trajectory point into 5 bins, as
v ∈ {0, 1, 2, 3, 4}. Given scene video resolution of W ∗ H ,
the size of the codebook is set to (W/10) ∗ (H/10) ∗ 5. With
the codebook, we compute a word for each trajectory point
with word = v ∗ (H/10 ∗W/10)+ (x/10)∗ (H/10)+ (y/10),
where (x,y) is the coordinate, and v is the velocity bin. After
the computation of words for all trajectory points, we represent
each tree with a bag-of -words [10].

For clustering, the learned topics are merged or split
according to the over- or under-segmented relations, which
are determined by the covariance Σ matrix constructed in the
parameter estimation procedure. If an element Σ(i, j) of the
covariance matrix equals to zero, topics i and j are irrelevant
and correspond to a cluster. If Σ(i, j) is larger than a threshold,
topic i and j are over-segmented, and should be merged into
a cluster. If Σ(i, j) is smaller than a threshold, topic i, j are
under-segmented, at least one of the topic i, j is shared with
multiple clusters. The thresholds to determine over- or under-
segmented topics are empirically selected by observing middle
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level features. The trajectory clustering procedure is detailed
in Algorithm 1.

Algorithm 1 Trajectory Clustering Algorithm
Input: Trajectory i, the trajectory set � /*Without loss gen-

erality, we use trajectory i to represent all trajectories.*/
Output: The trajectory i’s two cluster labels lm, ls
1: Exhaustively seek a neighbor set ε for the trajectory i in

set � based in [2]
2: for each trajectory j in ε do
3: γj ← spanning tree in [2]
4: ψ ← γj /*Ψ is the potential tree set */
5: EM iterating in BCTM for φγj

6: Ω ← φγj /*Ω is the potential topic probability set*/
7: end for
8: Initialize zi=0, lm=0, ls=0 /* zi is the trajectory i’s topic

label, lm and ls are the cluster labels*/
9: zi=seek-topic(Ψ,Ω)
10: seek-cluster(Σ, Ω, zi, lm, ls) /* Σ is the covariance

matrix*/

function seek-topic (tree set Ψ, topic probability set Ω )
1: γ = argmin

γ∈Ψ

H(Ωγ) /*H(z) = −
∑

z

Ωγ,z × log(Ωγ,z)

is information entropy, computed over the probabilities of
topics for the tree γ*/

2: z=argmax
z

Ωγ,z

3: return z

end

function seek-cluster (covariance Σ, topic probability set Ω,
topic label zi, cluster label ls, cluster label lm)

1: initialize Φm=∅, Φs=∅ /* Φm, Φs are potential topic
sets for merging and splitting, respectively */

2: for each zj in topic number k do
3: if Σzi,zj > ς1 then
4: Φm ← zj
5: end if
6: if Σzi,zj < ς2 then
7: Φs ← zj
8: end if
9: end for
10: lm = min

z
Φmz

11: ls = argmax
z∈Φs

Ωγ,z

end

(a) (b) (c)

Fig. 4. The estimated belief areas in (a) Station [2], (b) Campus [21], and
(c) Cross Road [22], respectively.

IV. EXPERIMENTS

Experiments are conducted on three datasets, which were
collected from the crowded New York’s Grand Central station

TABLE I. INFORMATION OF DATASETS

Dataset Resolution Time-Length Codebook size Trajectories
Station [2] 720*480 1800s 72 × 48 × 5 47866
Campus [21] 360*288 216s 36 × 29 × 5 32455

Cross Road [22] 720*576 373s 72 × 58 × 5 51136

TABLE II. INFORMATION OF LABELED TRAJECTORY PAIRS
Dataset Completeness Correctness Average length

Station [2] 1507 2000 133
Campus [21] 500 500 159

Cross Road [22] 1000 1000 185

[2], a surveillance camera in a campus [21] and a high-angle
camera of a busy cross road [22]. For simplicity, we use the
term “Station”, “Campus” and “Cross Road” to denote the
three datasets. The details of information of datasets are shown
in TABLE I. We use the full dataset of Station [2] and Campus
[21], but only part of the Cross Road dataset [22], since the
scenes in the dataset are not very crowded.

The parameter β contains the discriminative middle level
features learned by the BCTM. In Fig. 5, it can be seen
that middle level features learned by the BCTM are some
trajectory regions, which correspond to the paths in the scenes
and are obviously discriminative. For the two clusters (lm and
ls calculated by Algorithm 1), the trajectories will be assigned
to the cluster whose corresponding topic’s probability is the
highest. Some representative clusters of trajectories are shown
in Fig. 6, which are learned by our clustering algorithms with
“BCTM” features. Different colors denote different clusters.

We use correctness and completeness [2] to measure the
clustering accuracies. Completeness measures now accurately
the trajectories from the same clusters are clustered together.
Correctness measures now accurately the trajectories from the
different clusters are divided. Therefore, if all trajectories are
clustered into one single cluster, the completeness is 100%
and the correctness is 0%, and vice versa. We manually label
trajectories as ground truth in three different datasets, shown in
TABLE II. As discussed above, a trajectory gets two cluster
labels after its corresponding topics are hierarchically clus-
tered. In this experiment, completeness accuracy is primarily
related to the over-segmented topics and correctness accuracy
is primarily related to the under-segmented topics. The merged
cluster label lm is for completeness accuracy, and the split
cluster label ls is for correctness accuracy. The comparisons
of different contributions are listed in Fig. 7, 8. We compared
our work to the Spectral Clustering (SC) approach [8] in which
we implemented. We used a linear interpolation to align the
trajectories and measure the similarities with the Euclidean
distance.Fig. 7 shows that our approach outperforms other
three approaches on all the three datasets, with a significant
improvement of completeness accuracies. It can be seen that
the more topics we have, the higher completeness accuracy is.
With more topics to share the data’s clusters, BCTM can learn
more discriminative middle level features, so we can choose a
more reasonable threshold to identify over-segmented topics.
This can be done on the visualized discriminative middle level
features, as shown in Fig. 5. As most used trajectories are short
and mixed in Station, SC often fails to cluster them in Fig. 7(a).
In Fig. 7(b), as most of the trajectories are lying between area
1 and 4 in Fig. 4(b), other three approaches failed to perform
trajectory clustering. In contrast, BCTM performs well. In
Fig. 7(c), BCTM also performs better than other compared
approaches even when the objects are vehicles.As shown in
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(a) Topic 2 (b) Topic 4 (c) Topic 6

(d) Topic 4 (e) Topic 6 (f) Topic 8

Fig. 5. Representative middle level features learned by BCTM, arrows denote the directions of the paths. The two circles on each path denote the learned
belief areas [20]. (Better view in color version)

(a) Station dataset (b) Campus dataset (c) Cross Road dataset

Fig. 6. Representative trajectory clusters calculated by the proposed approach. (Better view in color version)
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(b) Campus dataset
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(c) Cross Road dataset

Fig. 7. Completeness accuracy.

2547



3 5 8 11 14 17 20 23 26 29 32

0.8

1

Topics

C
o

rr
e

ct
e

n
e

ss
 A

cc
u

ra
cy

BCTM
RFT
CTM
SC
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(b) Campus dataset
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(c) Cross Road dataset

Fig. 8. Correctness accuracy.

Fig. 8, the proposed approach has better correctness accuracies
compared to other approaches, except for the SC approach
with three and eight topics in Cross Road and five topics in
Campus. The reason that the SC approach can perform better
is that the scenes are not as crowded as Station, and long and
complete trajectories could be obtained with the object tracking
algorithm. They were clustered well with the SC approach.
However, with the increasement of topic number, the accuracy
of the SC approach drops.

V. CONCLUSION

We have proposed a belief based Correlated Topic Model
(BCTM) to learn trajectory middle level features for trajec-
tory analysis and clustering. By constructing a scene prior
based joint Gaussian distribution over the topics, BCTM could
effectively reflect the relations between topics and cluster-
s, and learn discriminative middle level trajectory features.
The middle level features are effectively implemented into
a hierarchical clustering algorithm for trajectory clustering.
We validated the effectiveness of the proposed approach and
compared it with three recent approaches on three datasets.
Experiments and comparisons show that the proposed approach
significantly improves the trajectory clustering performance. In
addition, the performance is stable under different parameters.
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