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Abstract—Trajectory classification has been extensively inves-
tigated in recent years; however, problems remain when process-
ing incomplete trajectories of noises and local variations. In this
paper, we propose a Locality-constrained Sparse Reconstruction
(LSR) approach that explores both sparsity and local adaptability
for robust trajectory classification. A trajectory dictionary with
locality constrains is constructed with tracklets partitioned from
collected trajectories by control points of cubic B-spline curves.
On the dictionary, the proposed LSR is used to calculate a
discriminate code matrix. Then, a loss weighted decoding strategy
is employed to perform multi-class trajectory classification. In
addition, the approach can be used for anomalous trajectory
detection with a thresholding strategy. Experiments on two
datasets show that the results of the LSR approach improve the
state of the art.

I. INTRODUCTION

Visual trajectory classification is an important research
topic in computer vision with applications in video analysis,
understanding and retrieval [1][2][3]. Many approaches use
trajectory classification as a tool to understand and characterize
the object behaviors in video scenes. However, trajectory
classification is still an open research problem with challenges
from the variation of trajectory length [4], the trajectory noises
[5], the local variation of the trajectories [6] and the limited
sizes of sample sets [7]. It is required to explore more effective
trajectory representation and classification approaches.

For trajectory representation [8], motion vectors, positions,
velocities, acceleration information etc. are commonly used
as feature vectors. For trajectories of variable length, re-
sampling and linear interpolation strategies [9] are typically
used to align the feature vectors, while function approximation
[10][11] could be used to improve the local adaptability of the
representation.

In [10], an efficient trajectory representation is proposed by
using function approximation algorithms of least square poly-
nomial, Cheybyshev polynomial and Discrete Fourier Transfor-
m (DFT). In [11], Haar wavelet coefficients and Least-square
Cubic Spline Curves Approximation (LCSCA) are adopted to
represent a trajectories. LCSCA holds better fidelity to the
original trajectory and is less sensitive to the trajectory length,
for the use of the least-square fitting procedure. Despite the
simplicity of these approximation approaches, however, they
often require fine turned function parameters to be adaptive to
various trajectory noises and local trajectory variations.

On aligned trajectory sequences, both unsupervised and
supervised learning methods are widely used for trajectory
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Fig. 1. Illustration of locality-constrained sparse recontruction

classification. In [9][12], self-organizing mapping and hierar-
chical clustering are used to learn prototypes. Test trajectories
are classified by their distances, e.g. the Euclidean distance,
the Hausdorff distance for Dynamic Time Warping (DTW)
[4], to the learned prototypes. Supervised learning methods
such as Gaussian Mixture Models (GMMs) [7], Bayesian
Model [4][13], Hidden Markov Model (HMM) [14], One-Class
Support Vector Machine (OC-SVM) [1], Hierarchical Hidden
Markov Model [14] and hierarchical Bayesian models [13], are
employed in trajectory classification. In general, these methods
have good performance on large sample sets; however, the
performance may drop significantly on small training sets.

Recently, the trajectory classification has been casted as a
sparse reconstruction problem [15]. Intuition behind the sparse
reconstruction lies in the fact that a test trajectory could be
reconstructed by a sparse linear combination of a few sam-
ples in a trajectory dictionary, and reconstruction coefficients
contains discriminative information that is be very effective
to trajectory classification [16][17]. The sparse reconstruction
based method improves the classification performance on small
sample sets. However, the adopted global sparse reconstruction
strategy is still challenged when incomplete trajectories of
local variations.

In this paper, we propose a Locality-constrained Sparse
Reconstruction (LSR) approach for robust trajectory classifi-
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cation. It is based on the observation that locality is often as
important as sparsity in trajectory representation [18]. Locality
enables LSR be adaptive to trajectory noises, incompleteness
and local variation, and sparsity guarantees that LSR has a
good performance on small training sets. A trajectory can be
seen as a union of partitioned tracklets (trajectory segments), as
shown in Fig. 1, and the local tracklets from the similar global
trajectories often hold the similar local shapes. Given a set of
tracklets, we construct a dictionary, on which a discriminate
code matrix is then constructed. The code-words in the matrix
are assigned according to the LSR, which guarantees that
the tracklets with local-nonzero coefficients in the dictionary
are often similar to the tracklet for classification. With the
code matrix, a loss weighted decoding strategy is employed to
perform trajectory classification. In addition, by thresholding
the reconstruction degree, the LSR approach is also used for
anomalous trajectory detection. The contributions of this paper
are summarized as follows:

• We propose Locality-constrained Sparse Reconstruc-
tion (LSR) approach;

• We apply the proposed approach to perform trajectory
classification and anomalous trajectory detection.

The remainder of the paper is organized as follows. In
section II, the LSR approach is introduced in detail. In section
III, we describe the trajectory classification and anomalous
trajectory detection procedures. Experimental results are pre-
sented in section IV and we conclude the paper in section V.

II. LOCALITY-CONSTRAINED SPARSE RECONSTRUCTION

In this section, we first present the trajectory representation,
on which we describe the trajectory partition and dictionary
construction strategies. We then describe how to perform
sparse linear reconstruction with a locality-constrained dictio-
nary.

A. Trajectory Representation

For variable length trajectories, we use control points of
cubic B-spline curves to extract a fixed-length parametric
vector as trajectory representation [15]. This is done by ap-
proximating each spatial-temporal trajectory with a uniform
cubic B-spline curve parameterized by time.

Given a trajectory in spatial and temporal space (x, y, t),
we use B-spline control points to represent both its shape
profile T = {(x1, y1), (x2, y2), · · · , (xn−1, yn−1), (xn, yn)}
in a parametric way F = {Cx

1
, Cx

2
, · · · , Cx

p , C
y
1
, Cy

2
, · · ·Cy

p},
where p is the number of control points and n is the length of
trajectory, Cx

p is the normalized x-coordinate of p-th control
point, and Cy

p is the normalized y-coordinate of p-th control
point. Fig. 2 shows a normal and an anomalous trajectory both
in spatial-temporal space and parametric space, respectively.

B. Trajectory Partition

The objective of trajectory partition is to divide a long
trajectory into tracklets. Accordingly, a long feature vector is
divided into a set of short sub-vectors, each of them will be
more well represented by a linear model.
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(b)
Fig. 2. Trajectory representation with p=7. (a)control points (red dots) of a
normal trajectory (blue curve). (b)control points (red dots) of the anomalous
trajectory (yellow curve). (Better view in color version)

Supposing there are J trajectory classes (called routes) in
a video scene, and each route routej = {a1j , a

2

j , ..., a
K
j } holds

K trajectories, we have a sample set D in the scene as:

D = ∪{routej} = {a1
1
, a2

1
, ..., aK

1
, ..., aKJ }, j = 1, ..., J. (1)

The trajectory partition is based on the fact that trajectories
of a same category should often have similar shapes and
share control points on the cubic B-spline curves. We partition
the trajectories into tracklets (trajectory segments) based on
the control points and then align the tracklets via the DTW
algorithm to construct a local dictionary, as

D= [d1 · · · di · · · dp−1]
T , i = 1, . . . , p− 1, (2)

where di= {a11(i), a21(i), ..., aK1 (i), ..., aKJ (i)} represents the i-
th tracklets of all trajectories in a scene after partition. In Fig.
3, we show a class of similar trajectories and their partitioned
tracklets.

C. Local Sparse Reconstruction

After the trajectory partition, a trajectory T is represented
as

T =
[
t1 · · · ti · · · tp−1

]T
, i = 1, . . . , p− 1, (3)

where ti is the feature vector of the i-th tracklet. Each tracklet
can be approximately represented as a linear superposition of
the di in the dictionary as follows:

ti ≈ diψi, (4)

where ψi represents a coefficient vector for superposition. Al-
though the aforementioned model could be more complicated,
we assume a linear function for efficiency and simplicity. For
so many trajectory routes in a scene, the dictionary is often
large, so the coefficient vector ψi should be sparse. This can
be computed by optimizing the l1 regularized least square
problem in (5), which typically provides a sparse solution [15]
as

ψ∗i = argmin
ψi

‖ti − diψi‖
2 + λ ‖ψi‖1 , (5)

where the regularization parameter λ is used to restrain the
sparsity. Because most elements of the coefficient vector ψi
are zero, a tracklet can be represented with as few as tracklets
of local similarity, called local sparse reconstruction.
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Fig. 3. Left: six partitioned tracklets from a class of similar trajectories (blue
curves). Right: the whole trajectories with control points (red dots).

III. TRAJECTORY CLASSIFICATION

With the proposed LSR, we further propose a discriminate
encoding together with a loss weighted decoding strategy
for classification. We also use a thresholding strategy for
anomalous trajectory detection.

A. Discriminate Encoding

Tracklets represent local shapes of trajectories, however,
they lose the global information of trajectories. Therefore, a
combination of reconstruction results from multiple tracklets
is required for accurate trajectory classification. We propose to
use a discriminate code matrix M ∈ {0, 1}Np×Nc to integrate
local sparse reconstruction results and pose locality. Np is the
number of tracklets in a trajectory, and Nc is the length of the
code-words (equal to J).

For classification of a test trajectory T , the key is to
calculate Mij with LSR under the hypothesis that the i-th
tracklet can be approximately represented as a linear super-
position of the i-th tracklet di in the dictionary. We define
a characteristic function δj for each class, which keeps the
sparse coefficients corresponding to j-th class in di and sets
the coefficients corresponding to other classes to zero. And
the sparse reconstruction residual for each tracklet can be
calculated with:

εij(ti) = ‖ti − diδj(ψ
∗

i )‖2 , j = 1, . . . , Nc. (6)

ElementMij that corresponds to assign the i-th tracklet to the
j-th class is calculated as

Mij =

⎧⎨
⎩

0, if j �= argmin
j

(εij)

1, if j = argmin
j

(εij)
, j = 1, . . . , Nc. (7)

It should be noted that there is only one nonzero element
in each row of M , that is, each tracklet can only belong to
exactly one class. An example of M is shown in TABLE I.

B. Loss Weighted Decoding

With the code matrix, a trajectory is classified by using a
loss-based decoding strategy [19]. The objective is to find a
matrixW that weights a loss function and adjusts the decisions
of the sparse reconstruction. The loss weighted decoding
process is described in Algorithm 1, where the weighted matrix
W is normalized in step 5, the linear loss function L(εij) = εij

TABLE I. AN EXAMPLE OF DISCRIMINATE CODE MATRIX

Code Class
Class 1 Class 2 Class 3 Class 4 . . . Class Nc

Tracklet 1 0 0 1 0 . . . 0
Tracklet 2 1 0 0 0 . . . 0
Tracklet 3 0 0 0 1 . . . 0
Tracklet 4 0 0 0 0 . . . 1
. . . . . . . . . . . . . . . . . . . . .

Tracklet Np 0 0 0 1 . . . 0

is applied in step 8. The algorithm returns the class label of a
test trajectory in step 10. It is effective to make a decision by
assigning a label to a trajectory according to class with minimal
decoding measure. The algorithm is detailed as follows.

Algorithm 1 Trajectory classification
Input: Discriminate code matrix M
Output: Class label j∗ of the test trajectory T
1: Initialize each item wij = MAX of W
2: for j = 1 to Nc do
3: for i = 1 to Np do
4: if Mij �= 0 and

∑Np

j=1
Mij �= 0 then

5: wij ←Mij/(
∑Np

j=1
Mij)

6: end if
7: end for
8: ej ←

∑Np

i=1
wijL(εij)

9: end for
10: return j∗ ← argmin

j

(ej)

C. Anomalous Trajectory Detection

The LSR approach can also be used for anomalous trajec-
tory detection using a dictionary constructed with only normal
trajectories. In this case, for each tracklet of T , we calculate
a reconstruction degree

Hi = min
j

1/εij∑Nc

j=1
(1/εij)

, (8)

which represents how well T is reconstructed on the i-th
tracklet, and classify T as a normal trajectory or an anomalous
trajectory by

F =

{
0, if

∑Np

i=1
sign(Hi − θ)Hi < 0

1, otherwise
, (9)

where θ is an empirically determined threshold (0.03). When
the value of

∑Np

i=1
sign(Hi − θ)Hi is smaller than zero, the

test trajectory is classified as an outlier of the normal trajecto-
ries samples, and is detected as an anomalous trajectory with
F = 0.

IV. EXPERIMENTAL RESULTS

We performed experiments on two public benchmarks:
the CAVIAR (“INRIA”) dataset [20] and the Carpark dataset
[21]. Lots of the trajectories in the datasets are of noise
and local variation. In experiments, we follow [15] to use
seven control points (p=7) for trajectory partition. 10% of the
selected trajectories are cut manually to simulate incomplete
trajectories. Trajectory examples are shown in Fig. 4.
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(a) (b)
Fig. 4. Trajectory examples from (a) the CAVIAR dataset and (b) the Carpark
dataset.

A. Trajectory Classification

The CAVIAR dataset [20] contains a series of trajectories
in an entrance lobby. There are 22 classes of normal classes
of trajectories, each of which has 100 simulated trajectories.
So, the total number of trajectories that can be used to
construct the dictionary is up to 2200. There are 21 test
trajectories corresponds to people walking directly from one
exit to another. In the Carpark dataset there are 269 trajectories
in a car park scene from 16 trajectory classes. There are 27 test
trajectories in this dataset. Correct classification rate (CCR) is
used to evaluate the performance [15].

The LSR based approach is tested with respect to different
percentages of training trajectories, and some classification
results are shown in Fig. 5 and Fig. 6. In each sub-figure, the
trajectory in deep color can be classified by LSR with those
trajectories in light color. In Fig. 7, we compare our proposed
locality-constrained sparse reconstruction approach with the
sparse reconstruction approach [15]. It can be seen that the
proposed LSR approach significantly outperforms the sparse
reconstruction approach when using more than 60% trajecto-
ries samples to construct the dictionary. In particular, the LSR
approach shows significant higher performance than the sparse
reconstruction approach on incomplete data (red dashed line).
On the CAVIAR dataset of incomplete trajectories, when using
60% trajectories samples to construct a dictionary, the CCR
of the LSR approach is about 20% higher than that of sparse
reconstruction approach. With the same settings on the Carpark
dataset, the CCR of the LSR approach is about 10% higher
than that of sparse reconstruction approach. This validates
the effectiveness of the proposed locality-constrained sparse
reconstruction, in particulary, on the incomplete trajectories.

B. Anomalous Trajectory Detection

Anomalous Correction Accuracy (ACC) is defined to mea-
sure the proportion of correctly classified normal and anoma-
lous trajectories. In the experiment, we use 19 anomalous
trajectories corresponding to people fighting, falling down,
leaving or collecting packages in the CAVIAR dataset, and 7
anomalous trajectories corresponding to car turning at forbid-
den areas in the Carpark dataset. The experiment is performed
on both complete trajectories and incomplete trajectories. A G-
MMs based approach [7] and a sparse reconstruction approach
[15] are used for comparison.

In TABLE II, it can be seen that the performance of our
LSR approach is very impressive. In the CAVIAR dataset,
the our approach has the highest performance (ACC=93.21%)
when using all samples on annotated trajectories. It also has

(a) (b)
Fig. 8. Detected anomalous trajectory examples from (a) the CAVIAR dataset
and (b) the Carpark dataset.

the highest performance (ACC=89.5%) on incomplete trajec-
tory. On the CAVIAR dataset, our approach has significant
performance improvement over two recent approaches (the
GMMs and sparse reconstruction approach). On the Carpark
dataset, our approach also has performance improvement.
Some detected anomalous trajectories are shown in Fig. 8.

TABLE II. COMPARISONS OF ANOMALOUS DETECTION

Dataset Method Accuracy(%)

CAVIAR

Annotated
GMMs based [7] 84.75

sparse reconstruction [15] 87.42
Our Approach 93.21

Incomplete
GMMs based [7] 74.00

sparse reconstruction [15] 83.72
Our Approach 89.50

Carpark

Annotated
GMMs based [7] 84.60

sparse reconstruction [15] 87.32
Our Approach 89.75

Incomplete
GMMs based [7] 79.41

sparse reconstruction [15] 85.29
Our Approach 88.24

V. CONCLUSION

We have proposed a locality-constrained sparse reconstruc-
tion (LSR) approach for trajectory classification in surveil-
lance video scenes. The proposed approach utilizes both the
locality and sparsity to represent trajectories on a constructed
dictionary set. A discriminative encoding strategy together
with a loss weighted decoding process is used to classify
the trajectories into different categories. We can also detect
anomalous trajectories with a dictionary constructed on normal
trajectories and a threshholding strategy. Experimental results
on two public datasets show the good performance of our
LSR approach. Comparisons with two recent approaches are
also provided, which indicates that the LSR approach have
significant advantages. In addition, this is achieved on small
trajectory sample sets.
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Fig. 5. Examples of correctly classified testing trajectories in the CAVIAR dataset. Different colors represent different classes. (Better view in color version)

Fig. 6. Examples of correctly classified testing trajectories in the Carpark dataset. Different colors represent different classes. (Better view in color version))
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