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ABSTRACT

Detecting objects in aerial images is challenged by variance of
object colors, aspect ratios, cluttered backgrounds, and in par-
ticular, undetermined orientations. In this paper, we propose
to use Deep Convolutional Neural Network (DCNN) features
from combined layers to perform orientation robust aerial ob-
ject detection. We explore the inherent characteristics of DC-
NN as well as relate the extracted features to the principle of
disentangling feature learning. An image segmentation based
approach is used to localize ROIs of various aspect ratios, and
ROIs are further classified into positives or negatives using an
SVM classifier trained on DCNN features. With experiments
on two datasets collected from Google Earth, we demonstrate
that the proposed aerial object detection approach is simple
but effective.

Index Terms— Aerial Object Detection, Orientation Ro-
bust, Deep Convolutional Neural Network.

1. INTRODUCTION

In the past few years, there has been a surge of interest in
aerial image object detection. Fast and robust object detec-
tion in aerial images is potentially applicable in traffic surveil-
lance, emergency, remote sensing and large scale image con-
tent analysis.

A considerable number of approaches have been proposed
for aerial object detection [1–5] i.e., vehicle and plane de-
tection, yet the orientation robustness problem remains un-
solved. In aerial images, objects in multiple orientations have
large appearance variation, which challenges existing feature
representation and object detection approaches. In addition,
the aspect ratios of objects vary with their orientations, which
introduces difficulty to object localization.

In most of the aerial object detection approaches, detec-
tors are trained with orientation-registered samples. Various
hand-craft features including Haar-like [6], HOG [7], LBP
[8] are exploited to represent aerial objects [5], and classifi-
cation methods including SVM and Partial Least Squares are
used for classification [9]. In the detection procedure, test im-

ages are rotated to multiple orientated channels, where objects
in the registered orientation are detected. Such orientation-
registered approaches are simple and intuitive. However, it
often suffers from the high computational cost. In addition,
merging results from multiple orientated channels could in-
troduce additional false alarms.

On the other hand, researchers aim to find features that
are invariant to specific transformations [10–14]. In [13, 14],
deep learning methods including the Convolutional Neural
Network and Transformation Invariant Restricted Boltzmann
Machine (TIRBM) [12] are studied. However, in these ap-
proaches some other challenging factors i.e., the variance of
object colors, aspect ratios and cluttered backgrounds are not
comprehensively considered.

This work is motivated by a recent leading visual object
detection approach rooted in the rich features from deep Con-
volutional Neural Networks (CNN) and a coarse-localization-
fine-classification pipeline [15]. Our main contribution is to
explore orientation robust features from combined layers of
DCNN. By conducting the t-SNE analysis for feature visu-
alization and analysis, we show how the combined features
are related to the recent proposed principle of disentangling
feature learning [16]. We argue that rather than extracting
rotation invariant characteristics, the combined DCNN fea-
tures are able to model the rotation factor, which is critical
to achieve good performance. To reduce the computational
cost as well as process variance of aspect ratios, we employ
an image segmentation approach to coarsely localize object
candidates, which are then classified with an SVM classifier
trained on the orientation invariant features.

The remainder of the paper is organized as follows. In
Section 2, the orientation robust feature extraction procedure
and the aerial object detection approach are descried. Section
3 presents experimental results. Section 4 concludes the paper
with discussion of future works.

2. APPROACH

Our proposed object detection approach comprises two parts:
a rotation invariant DCNN feature extraction procedure and
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Fig. 2. t-SNE based visualization of multi-oriented samples. Different colors indicating samples of different orientation in
degree (Better view in color).

Fig. 1. Structure of the employed Deep Convolutional Neural
Network (AlexNet). We use the POOL5, FC6 and FC7 layer
features, whose dimensions are 9216, 4096 and 4096 respec-
tively.

an object detection pipeline.

2.1. DCNN Features

For orientation robust DCNN feature extraction, we employ
the well-known AlexNet architecture [17]. As shown in Fig.1,
the DCNN structure contains five convolutional layers, three
of which are followed with pooling layers, and two fully con-
nected layers are stacked at the end, forming a deep CNN ar-
chitecture. More details about the structure and training pro-
tocol please refer to [17].

Recent works have shown that the DCNN trained with a
large scale dataset, i.e., ImageNet [18], can generate to oth-
er vision tasks [19]. Other works demonstrated that the best
performance is achieved by different feature layers in differ-
ent vision tasks. For example, in the PASCAL VOC multi-
class object detection challenge, FC7 performed the best [15].
However, in scene recognition task, FC6 outperformed other
layers [20]. In this work, we use DCNN trained with Ima-
geNet to extract multiple layers of features. Three deep lay-
ers, i.e., POOL5, FC6 and FC7, are considered for rotation
robust feature extraction.

The aim is to find a deep feature representation that is ro-
bust to aerial object rotation. To achieve this, we first try to
understand how the features distribute with respect to orienta-
tions. We propose to use the t-SNE algorithm [21] to visualize

the learned features. It can be seen from Fig.2(a) that in the
POOL5 feature space, samples form clusters with respect to
orientations. In the FC6 and FC7 spaces, however, samples
tend to mix together, as shown in Fig.2 (b) and Fig.2(c). Such
phenomenon is also observed in the plane samples. With this
observation, we can claim that the POOL5 features could well
model the rotation factor. FC6 and FC7 layer features seem to
model other characteristics rather than orientation variances.

The feature selection procedure is based on the recent ad-
vance of disentangling learning [12], which shows that it is
proper to use separate groups of features to model distinct
factors. With the principle of disentangling learning, features
should be able to model the underlying factors of variation,
of which rotation is the most obvious one in our case. Since
POOL5 shows strong correlation to orientation change, it is
expected that employing POOL5 features in the group would
achieve better performance.

Beyond the rotation factor, it is expected that the extracted
features are robust to other factors, i.e., aspect ratios, color
and backgrounds. We further propose to combine features
from a different layer for these factors. By concatenating the
POOL5 with FC6 or FC7, we experimentally found the best
combined feature representation.

2.2. Object Detection
With extracted rotation invariant DCNN features, we conduct
a coarse-localization-fine-classification pipeline for objection
detection. The flowchart of the pipeline is shown in Fig.3.
Details are described in the followings.

2.2.1. Coarse localization
The conventional sliding window detection pipeline, where
DCNN features are required to be extracted from millions of
image windows, is highly computationally expensive. To re-
duce the number of windows, a graph-cut based image seg-
mentation approach is firstly used to produce colour consis-
tent regions [19]. On the segmented regions, a similarity mea-
sure is used to iteratively group two most similar regions to-
gether as a new one. Such an approach, named as Selective
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Fig. 3. Flowchart of the proposed object detection pipeline.

Search, achieved great success, and became the most popular
region proposal methods for object detection.

We conduct Selective Search with a simple modification.
Considering that the objects are usually in small and unifor-
m scales, we propose stopping the Selective Search merging
procedure when the region size exceeds an empirically set
threshold: about 100 ∗ 100 in an 1280 ∗ 659 images. This
simple strategy effectively reduces the region proposals about
60% without performance loss.

2.2.2. Fine Classification

For all the regions of interest (ROIs) generated from the
coarse localization stage, we extract features with the method
introduced in Section 2.1, and train a linear SVM for clas-
sification. The reason we choose linear SVM is that the
dimensionality of the DCNN features from combined layers
is very high (about 10k), and therefore, could be well learned
with a linear SVM classifier. A hard negative mining proce-
dure is conducted to further improve the performance. After
classifying all the candidate windows, Non-Max Suppress
(NMS) is applied to obtain the final detection results.

3. EXPERIMENTS

We evaluate the proposed approach on a vehicle dataset and a
plane dataset collected from Google Earth aerial images. The
vehicle dataset contains 310 images with 2819 vehicle sam-
ples. The plane dataset contains 600 images, with 3210 plane
samples. The samples are carefully selected so that object ori-
entations in the datasets distribute evenly, as shown in Fig.4.
Each dataset is split into two subsets: (250 images, 60 im-
ages), (500 images, 100 images). One subset is for training,
and the other for testing.

The object detection algorithm returns a list of bound-
ing boxes with SVM classification scores. Evaluation is per-
formed based on this list and the ground truth. According to
the PASCAL VOC object detection evaluation protocol [22],
a detected bounding box and a ground truth is recognized as
matched if their overlap is larger than 50%. The precision-
versus-recall curves are presented in Fig.5(a) and Fig.5(b),
respectively. Table 1 gives the precision of vehicle detection
result when the recall rate is set as 0.8 and the precision of
plane detection when the recall rate is set as 0.9.

Fig. 4. Distribution of vehicle and plane orientations in de-
gree.

For comparison, an Aggregate Channel Features (ACF)
[23] based sliding window detector is used as baseline. ACF
uses HOG, color and gradient as features, and is one of the
state of art rigid rigid object detector on many detection tasks.
It can be seen that on both the vehicle and plane datasets, the
proposed DCNN features significantly outperforms the ACF
based detector. For single layer feature, FC7 outperforms
POOL5 and FC6 in the vehicle dataset, with precision of
0.861 when recall is set to 0.8. While for the plane dataset
POOL5 is the best among the three, with 0.891 precision
rate when recall is set to 0.9. On the other hand, combined
features significantly improve the performance, especially for
features involved with POOL5 layer. In vehicle detection, the
POOL5+FC6 combination achieved a 0.945 precision rate
with a 0.8 recall rate. In plane detection, the POOL5+FC6,
POOL5+FC7 and POOL5+FC6+FC7 combinations show
similar results, while POOL5+FC7 is a little better.For con-
venience, we extract the DCNN features using the RCNN
pipeline[15].

Table 1. Performance of features from different layers.

Feature
Vehicle

Recall=0.8
Plane

Recall=0.9
ACF(baseline) 0.542 0.511

POOL5 0.548 0.891
FC6 0.635 0.832
FC7 0.861 0.561

FC6+FC7 0.921 0.881
POOL5+FC6 0.945 0.971
POOL5+FC7 0.941 0.972

POOL5+FC6+FC7 0.942 0.971

As indicated in Table 1, combinations involved with
POOL5 tends to perform better, which validates the anal-
ysis in Section 2, i.e., the POOL5 features can well model
the rotation factor. This also explains why the FC6+FC7
combination performs weaker than other combinations in
both datasets. This shows that t-SNE provides an effective
way to select deep features. It also justifies the hypothesis
that disentangling factors of variation helps selecting feature
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Fig. 6. Vehicle and plane detection examples. c⃝2014 Google.
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(a) Precision-versus-recall curves of vehicle detection.
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(b) Precision-versus-recall curves of plane detection.

Fig. 5. Performance and comparisons of aerial object detec-
tion.

representations, although mathematically forming of such a
hypothesis remains challenging.

Fig.6 shows some detection examples. It can be seen that
our proposed approach detects most of the multi-oriented ob-
jects with few false alarms. In the test images, there exists
lots of man-made structures, which are correctly classified as
negatives. Some vehicles are missed in Fig.6(a), the reason
is that segmentation based coarse localization procedure fails
on them.

4. CONCLUSION
The experimental results show that the DCNN features from
combined layers are competitive when performing orienta-
tion robust aerial object detection. With the features, one
does not need to perform a rotate-and-detect pipeline, which
considerably reduces the computational complexity. We also
show that the t-SNE analysis and visualization can be used
to find proper DCNN layers. In the future, we plan to de-
tect more kinds of aerial objects with the proposed features
and pipeline. To drive the development of aerial image detec-
tion research, we will make the aerial object datasets publicly
available.
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