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ABSTRACT

Trajectory analysis in crowded video scenes is challeng-
ing as trajectories obtained by existing tracking algorithms are
often fragmented. In this paper, we propose a new approach
to do trajectory inference and clustering on fragmented tra-
jectories, by exploring a cluster specif c Latent Dirichlet Al-
location(CLDA)model. LDAmodels are widely used to learn
middle level trajectory features and perform trajectory infer-
ence. However, they often require scene priors in the learn-
ing or inference process. Our cluster specif c LDA model ad-
dresses this issue by using manifold based clustering as ini-
tialization and iterative statistical inference as optimization.
The output middle level features of CLDA are input to a clus-
tering algorithm to obtain trajectory clusters. Experiments on
a public dataset show the effectiveness of our approach.

Index Terms— Latent Dirichlet Allocation, Manifold,
Trajectory clustering

1. INTRODUCTION

Trajectory clustering is a video analysis task whose goal is
to assign individual trajectories with common cluster labels,
with applications in activity surveillance, traff c f ow estima-
tion and emergency response [1], [2].

In straightforward trajectory clustering approaches, a set
of features, i.e. coordinates, velocities and/or geometrical
shapes and scene specif c information, are extracted to rep-
resent trajectories, and then unsupervised learning methods
are used to classify these features [1], [2], [3]. However, in
videos of crowded scenes, it is often diff cult to obtain com-
plete trajectories with off-the-shelf tracking algorithms [4]. In
most cases, fragmented trajectories of different length are ob-
tained, which are diff cult to be aligned and represented with
low level features.

Recently, middle level feature based trajectory clustering
approaches have attracted attentions. Middle level features
are usually observed as dominant paths of moving object-
s, which can bridge the fragmented trajectories in low level
feature space with their clusters [5]. Trajectory middle level
features can be learnedwith non-Bayesian approaches, for ex-
ample, similarity clustering [6] or dimension reduction [7]. In
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Fig. 1. (a) Illustration of the LDA based topic extraction in
original feature space (up) and a manifold embedding space
(down). (b) Illustration of correspondence between trajectory
clusters and the manifold embedding.

[6], Wang et al. propose two Euclidean similarity measures,
and perform trajectories with the def ned measures. In [7],
Hu et al. introduce a dimensional spectral clustering method.
Trajectories are projected to a lower space through eigenvalue
factorization, and are clustered in the lower sub-space with a
k-means algorithm.

Middle level features can also be learned with hierarchical
latent variable Bayesian models, such as latent Dirichilet al-
location (LDA) [8] models, which have been widely explored
in classif cation and clustering tasks [9], [10], [11], [12], [13],
[14]. These models are adopted from the natural language
processing and are well known as ”topic models”. With LDA
related models, trajectories are treated as documents and ob-
servations of trajectories are treated as visual words. Learned
topics correspond to the middle level features of trajectories.

In [12], Li et al. proposed a theme model that poses class
supervision to LDA, and enables different classes have dif-
ferent topics. In [13], Daniel et.al. proposed a labeled LDA
that assigns each class a Dirichlet prior. In [11], Wang et al.
proposed a topic-supervision LDA (ts-LDA) which enables
different classes share different topics. In [14] Wang et al.
proposed a semi-latent LDA, which enables both the latent
labels and words are visible in the training process. In [10],
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Wang et al. proposed a mixture of latent Dirichlet allocation
(LDA) models for trajectory clustering. In [9], Zhou et al.
proposed a Random Field Topic (RFT) model for trajectory
clustering by integrating scene priors.

Despite of the effectiveness of above LDA models, how-
ever, most of them [10, 11, 12, 13] ignore the distribution
of data, so they often require a complex parameter estimation
and variable inference procedure. Some of them [9] use scene
priors to improve performance, but can only be used in situ-
ations where priors are available. Some of them [10, 12] use
cluster initialization to replace scene priors, however, to do a
good initialization in a high dimensional feature space is often
diff cult.

We propose a cluster-specif c LDA (CLDA) model with
cluster initialization in a manifold embedding space and it-
erative optimization with Bayesian inference. As shown in
Fig.1(a), the cluster initialization enables that our approach
create topics (middle level features) that can ref ect data distri-
bution and cluster information, effectively. After the iterative
optimization, the CLDA model creates discriminative topics
for clustering without using any scene prior. Here, “discrimi-
native” implies that different sets of trajectories have different
clusters in the manifold space, as shown in Fig.1(b).

The remainder of the paper is organized as follows: The
CLDA model is described in Section 2. The trajectory clus-
tering approach is presented in section 3. Experiments are
presented in Section 4 and we conclude the paper in Section
5.

2. CLUSTER-SPECIFIC LATENT DIRICHLET
ALLOCATION

This section presents the CLDA and the middle level feature
(topic) extraction with the CLDA parameter estimation.

2.1. Latent Dirichlet Allocation (LDA)

To make the paper self-contained, we f rst review the LDA.
Fig. 2(a) shows the graphical representation of LDA [8]. Four
important notations about LDA are corpus, document, topic
and word, which in our case correspond to path, trajectory,
topic and visual word, respectively. M is number of docu-
ments. Nj is the number of words of each trajectory j. θ
is assumed to follow a Dirichlet distribution with parameter
α. zji is a latent variable being assumed to follow a parame-
terized multinomial distribution Mult(θj). x denotes words.
β is hyper-parameter, corresponding to the middle level fea-
tures.

2.2. Cluster-specif c Dirichlet Allocation (CLDA)

Fig.2(b) shows the graphical representation of CLDA. It can
be seen that observed visual words (low level features) and la-
bels are inputs of the CLDA. The visual words that are coordi-
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Fig. 2. LDA and CLDA models. (a) Graphical representation
of LDA, (b) Graphical representation of CLDA, (c) Graphical
representation of approximate distribution of CLDA.

nates and velocities of tracked objects are described in Section
3. The joint probability of the model is given by Eq.(1), the θ
probability is changed to p(θ|c, α) =

∏C

j=1 Dir(θ|αj)
δ(c,j),

where Dir(•) denotes the Dirichlet distribution based on pa-
rameter αj .

p(x, z, θ, c|α, β, η) = p(c|η)p(θ|α, c)·
∏M

j=1 p(zj|θj)p(xj |zj , β).
(1)

Other terms are consistent with that in [8]. Similar to [12],
we set the uniform distribution p(c) = 1/C. And then
leave out the estimation of η. The label C is updated by
argmaxc p(x|c, α, β), where x denotes a set of words of a
trajectory. The posterior probability of x is in Eq. (2).

p(x|α, β, c) =
∫

p(θ|α, c)
(

∏M
j

∑

zj
p(zj|θj)p(xj |zj , β)

)

dθ.
(2)

We use the variational breaking algorithm in [8] to do variable
inference and parameter estimation. Fig.2(c) is the graphical
representation of the approximate distribution of the CLDA.
Therefore, we have

log p(x|α, β, c) = L(γc, φc;αc, β)+
KL(q(θ, z|γc, φc)||p(θ, z|x, αc, β)).

(3)

We iteratively maximize the the term L(•) instead of
log p(x|α, β, c), which results in the minimum of difference
between the distribution in Fig. 2(b) and Fig. 2(c). The
details of computation can be seen in [8]. In Eq. (4) and Eq.
(5), we present two terms related to middle level features.

φc
ki ∝ β exp

[

Ψ(γc
k)−Ψ(

K
∑

k=1

γc
k)

]

(4)

βk ∝ Σ
i
φc
k,ini (5)

where φc
ki denotes the probability that the ith word belongs

to the kth topic’s. Ψ(•) is a digamma function and ni is the
count of the ith word in the codebook. βk is the kth topic’s
feature representation with respect to the codebook.

3. TRAJECTORY CLUSTERING

In trajectory clustering, we f rst connect trajectory fragments
into trajectory trees and extract low level features, which are
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embedded in a dimensional manifold space for initial trajec-
tory clustering. With initial cluster labels, the middle level
features are extracted by the proposed CLDA for f ne trajec-
tory clustering. The f owchart of the proposed approach is
shown in Fig.3.

3.1. Low-level Feature Extraction

Given a crowded video, we f rst use a KLT tracker [15] to cal-
culate trajectory segments and motion vectors of objects. A
spanning tree algorithm [9] is used to uncover spatiotemporal
relations among trajectory fragments and connect them into
trajectory trees, on which visual words are extracted as low
level features.

To extract low level features (visual words), we construct
a codebook for each video scene. The scene image is divid-
ed into cells of 10*10 pixels, and the velocity of each tra-
jectory point is quantized into 5 bins, as v ∈ {0, 1, 2, 3, 4}.
Given scene video resolution ofW ∗H , the size of the code-
book is set to (W/10) ∗ (H/10) ∗ 5. With the codebook,
we compute a word for each trajectory point with word =
v ∗ (H/10∗W/10)+(x/10)∗ (H/10)+(y/10), where (x,y)
is the coordinate, and v is the velocity bin. With the words for
all trajectory points, each trajectory tree is represented with a
bag-of -words [8].

3.2. Initial Clustering

We use the Laplacian Eigenmap method (LE) [16] for trajec-
tory manifold embedding, and empirically set the dimension-
ality of the manifold space to 4. The goal in LE is to minimize
the term

∑

i,j (yi − yj)
2wij , where y denotes the coordinates

of trajectories in the low dimensional feature space, and wij

denotes the neighbor weights. wij is 1 if trajectory i, j have
the neighbor relations, otherwise, wij is set as 0. Trajecto-
ry’s neighbors are found through a k-near-neighbors (KNN)
method. We reduce the dimensions of trajectories with a opti-
mization procedure in [16]. Through the optimization, trajec-
tory data will be projected to a lower dimensional manifold
embedding space where the cluster information (neighboring
relations) is reserved.

In the lower dimensional manifold embedding space, a k-
means algorithm is adopted to perform initial trajectory clus-
tering and obtain initial trajectory cluster labels.

3.3. Fine Clustering

Using initial labels and low level features as inputs, the mid-
dle level features could be extracted by the proposed CLDA,
as in section 2.2. In the procedure, topic probabilities of tra-
jectory trees in the topic space are computed. GivenK topics,
each tree has K corresponding probabilities. The topic label
of the largest probability is assigned to the tree. After this
step, each trajectory tree has a topic label. The topic labels
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Fig. 3. Flowchart of the proposed trajectory clustering ap-
proach.

will be input to the information entropy clustering algorith-
m [9], which computes potential information entropy of trees
that a trajectory segment belongs to, and then determines the
cluster label of the trajectory segment.

4. EXPERIMENTS

Experiments are conducted on the video dataset collected
from the crowded New York’s Grand Central station [9]. The
video has a resolution of 720*480 pixels, and has a temporal
length of 1800 seconds. On the video, a KLT tracking algo-
rithm is used to calculate 47866 trajectories, which have the
average temporal length of 133 frames. According to the low
level feature (visual word) calculation procedure in section
3, the codebook size is 72*48*5, so the low level feature
dimensionality is 17280.

Correctness and completeness [9], [17] are used to evalu-
ate the trajectory clustering performance. Completeness mea-
sures accurately the trajectories from the same clusters are
clustered together. Correctness measures the trajectories from
the different clusters are divided. If all trajectories are clus-
tered into one single cluster, the completeness is 100% and
the correctness is 0%, and vice versa. The labeled trajecto-
ries in [9] are used as ground truth, in which 1507 pairs for
completeness and 2000 pairs for correctness. In Fig.4(a) and
Fig.4(b), we compare our approach to the Spectral Clustering
(SC) approach [7] and the Random Field Topic (RFT) based
approach [9]. When implementing the approach SC, We use
a linear interpolation to align the trajectories and measure the
similarities with the Euclidean distance.

Fig.4(a) shows the comparison of completeness perfor-
mance. “LAP4” denotes the 4 dimensional manifold embed-
ding. It can be seen that the “SC” approach that does not
use dimension reduction or LDA for middle level feature ex-
traction has a low performance. This is because in crowd-
ed video scenes trajectories are overlapped with each other
and are fragmented. Therefore, direct clustering in low level
feature space is diff cult. Without manifold embedding, the
approach “k-means+CLDA” has a lower completeness per-
formance than our approach (“k-means+LAP4+CLDA”)with
manifold embedding. It can also be seen that our approach
(without any scene prior) has slightly better performance than
the RFT model (with scene priors) [9]. This demonstrates the
effectiveness of our proposed cluster specif c LDA model.
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Fig. 4. Performance and comparison of trajectory clustering approaches. (a) Completeness performance, (b) Correctness
performance, (c) Model learning time.

(a) (b) (c)

(d) (e) (f)

Fig. 5. Comparison of trajectory clustering results. (a)original trajectory segments, (b) “k-means+LAP4+CLDA” approach, (c)
“RFT” approach, (d) “SC” approach, (e) “K-means+CLDA” approach, (f) “K-means+LAP4” approach.

Fig.4(b) shows comparison of correctness performance
from f ve approaches. Except the “k-means+LAP4” ap-
proach, other four approaches have similar correctness perfor-
mance. The correctness performance of the “k-means+CLDA”
approach is high because CLDA still can calculate the cluster
labels through statistical inference. However, in Fig.4(a),
the completeness performance of the “k-means+CLDA” ap-
proach is low. This is for the reason that trajectory data in
the high dimensional low level features space is very sparse,
which makes it diff cult to directly perform clustering using a
k-means clustering algorithm.

Fig.4(c) compares the learning time for RFT and the CL-
DAmodel under different topics. It can be seen that the learn-
ing procedure of our proposed CLDA model is much faster
than that of the RFT model.

In Fig.5, we visualize some trajectory clusters by different
approaches. It can be seen that our approach can calculate
clear trajectory paths and clusters.

5. CONCLUSION
We have proposed a cluster specif c latent Dirichlet allocation
(CLDA) to learn trajectory middle level features for trajectory
inference and clustering. Using manifold based clustering as
initialization, the proposed CLDA could be used to perform
trajectory inference and calculate trajectory middle level fea-
tures (topics) without using scene priors. We also proposed a
trajectory clustering approach based on the CLDAmodel, and
validated the effectiveness of the approach and compared it
with recent approaches. Experiments and comparisons show
that our approach has a comparable performance to the scene
priors based RFT model. In addition, our approach has a high-
er learning speed.
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