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ABSTRACT

Scene text detection in images of cluttered backgrounds
and/or multilingual context is very challenging. In this paper,
we propose a discriminative approach that integrates appear-
ance and consensus features for robust scene text detection.
We propose an integrated discrimination model to perform
text classification as well as control component grouping.
We design shape, stroke and structural features to describe
text component appearance and the consensus among them.
Experimental results on three public datasets show that the
proposed approach is robust to cluttered backgrounds, and is
applicable in multilingual environments.

Index Terms— Text detection, Discriminative model,
Feature integration

1. INTRODUCTION

The text detection and recognition in natural scene images
have received significant attention for demand for applica-
tions in scene understanding and visual input [1, 2, 3]. Text
detection refers to a task of localizing and grouping text com-
ponents, as well as discriminating them from the background.

There are two commonly used approaches in scene tex-
t detection: those based on connected components and those
which use a sliding window classifier on a pixel or a small
patch. Component based methods often use color [2], point
[3], edge/gradient [4], stroke [5, 6], region [7, 8, 9] features
and a combination of them [10, 11, 2, 12] to localize char-
acters or character parts, which are then grouped for further
classification. Sliding window methods usually train discrim-
inative models to detect text at multiple scales [10, 4]. Image
patches can be classified with texture, shape or appearance
models and then are grouped into text regions.

Stroke analysis is a preferred component based method
for text localization, and the SWT is competitive for local-
izing high resolution text, in particular, when it is combined
with a learning method or enhanced with other cues such as
opposite edge pairs (OEPs) or the Bandlet-based edge detec-
tor [6]. Typical stroke based text detection approaches [13]
uses regions of strokes as text candidates. However, in clutter
background, they often require additional cues for text/non-
text discrimination.

Maximally Stable Extremal Regions (MSER) based text
detection has attracted attentions in recent years. The main
advantage of this representation over other component based
approaches is rooted in that the MSER algorithm can adap-
tively detects stable color regions as text components. After
components are localized and grouped, a classification proce-
dure on component shape [14] structure [8, 9] or appearance
features [15] could be used to filter out false detections. De-
spite of the effectiveness of MSER method in text localiza-
tion, it also require additional cues for text/non-text discrimi-
nation.

On the other hand, sliding window approaches [16, 17,
18, 19] usually use discriminative methods to localize tex-
t patches and group the patches into regions. These approach-
es use sliding window classification to localize text, and are,
therefore, less sensitive to low resolution text. However, it is
validated that in the clutter backgrounds and multilingual en-
vironments, direct patch discrimination is often difficult be-
cause a small image patch often does not contains sufficient
discriminative information.

This paper proposes an approach that fully leverages the
appearance and consensus of components for robust text de-
tection. For detection, MSER [20] is used to extract text com-
ponents, which are then grouped with an agglomerative clus-
tering algorithm. In each clustering iteration, the appearance
and consensus features are extracted and are input into the
IDM for text discrimination. The agglomerative component
grouping procedure stops when the output of the discrimi-
native model is negative. As an extension of previous work
[14], this paper contains a more general formulation of a dis-
criminative text detection framework, and a training proce-
dure on partially marked training samples (bounding boxes
of text components are not available). It also explores a lan-
guage independent text representation using the shape filters
and stroke filters to capture the characteristics of text appear-
ance. Instead of using syntactic methods, adopted stroke fil-
ters are based on unsupervised learning and therefore is robust
cluttered backgrounds and multilingual text. A block diagram
of the propose approach is shown in Fig.1.

The remainder of the paper is organized as follows: The
text detection approach is described in Section 2. Experi-
ments are presented in Section 3 and we conclude the paper
in Section 4.
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Fig. 1. Block diagram of our text detection approach.

2. TEXT DETECTION APPROACH

2.1. Integrated discrimination model

Formulation: The IDM is a linear discriminative model for
a sequence of components, defined as:

F (X) = αT · ψ(X) + βT · φ(X) + γ, (1)

where ψ(X) are appearance responses and φ(X) are consen-
sus features of text components, X = {xz}, z = 1, ..., Z.
The appearance responses are based on the outputs of two
low level classifiers, f(xz) and g(xz) (called filters), which
correspond to shape features and stroke features, respectively.
ψ(X) is the average response from f(xz) and g(xz). φ(X)
is component consensus features. α and β are weight vectors
of the model and γ is a threshold for text/non-text discrimina-
tion. If Eq.1 is positive, X is text, and non-text, otherwise.

The number of characters in text objects varies a lot, so the
component numberZ should be determined in detection. This
is an agglomerative component grouping procedure where

X̃ ← X̃ ∪Xi ≡
{xz}z=1,...Z̃ ← {xz}z=1,...,Z̃ ∪ {xi}i=1,...,I ,

(2)

and {xi}i=1,...,I is the nearest component group to X̃ =
{xz}z=1,...,Z̃ . For detection, we maximize the componen-
t number in each text candidate under the discrimination
constraint, as:

max
Z̃
{xz}z=1,...,Z̃ , s.t. F (X̃ = {xz}z=1,...,Z̃) > 0, (3)

where the objective function maximizes the component num-
ber in each text region by merging components into it, recur-
sively. However, if there are non-text components merged,
F (X̃) returns a negative value, so the merging procedure is
stopped. In addition, when more components merged, the
consensus among the components decreases, which can make
F (X̃) return a negative value. Eq.3 integrated the text local-
ization and the text/non-text discrimination procedures.

2.2. Appearance feature extraction

The first appearance representation is based on HOG filter-
s. The second is based on stroke filters, which are learned
with an unsupervised method, and are applied on sub-blocks
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Fig. 2. Illustration of the component appearance response cal-
culation. (a) Shape response by a multiplication operation.
(b) Stroke response by a convolution operation.

(a) (b)

Fig. 3. Visualization of the shape (a) and stroke filters (b).

of components to capture the stroke characteristics. When ex-
tracting appearance features, components will be normalized
so that features are extracted at the proper scale. This is illus-
trated in Fig.2, and detailed as follows.

Shape features: HOG features are employed as low level
shape features. When extracting HOG features, a normalized
component is divided into cells of 4×4 pixels, and each group
of 2× 2 cells is integrated into a block with overlapping win-
dows. Each component is represented by 36 blocks, on which
1296 dimensional HOG features are extracted.

Component samples are partitioned into K groups with
a K-means clustering algorithm. A multi-class linear SVM
training algorithm with a one-against-all strategy is used to
train K linear SVMs fk(x) = wk

T · x + bk, each of which
corresponds to a component cluster. The trained the weight
vectors of the classifiers are shape filters, as shown in Fig.3(a).
When calculating shape appearance response classification, a
component will be normalized to a 28 × 28 patch and multi-
plied with all of the shape filters. The maximum of the outputs
is used as the shape response of the component, as

f(x) = max{fk(x)}, k = 1, ...,K. (4)

p
Stroke features: The stroke filters, which attempt to cap-

ture the stroke response, are learned using a K-means based
unsupervised learning method [19] on 7×7 text image patch-
es. The filters refer to the learned K centroids from the input
gray value component sub-patches, as shown in Fig.3.

Given the learned stroke filters, we use convolution oper-
ations between a normalized component image and the stroke
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Fig. 4. Spatial relationship of component group Xi and Xj .

filters to compute the pixel level stroke response, as illustrat-
ed in Fig.2(b). For each pixel we obtain a K dimension-
al response, and we then use a non-linear feature mapping
[19] to reduce the feature dimension from each componen-
t x. After the stroke response of each pixel is calculated, a
”pooling” operation is used to convert the response vectors
gk(x

p), k = 1, ...,K, xp ∈ x, of all the pixels in a compo-
nent to a K dimensional feature vector. The elements of this
vector are further summarized to the stroke response, as

g(x) =
K∑

k=1

∑
xp∈x

gk(xp). (5)

2.3. Consensus feature extraction

Component consensus that includes the pairwise relationship-
s between components and the holistic variance of grouped
components refers to the spatial alignment and color similar-
ity of components in a text region (Fig.4). Assuming i and j
denote the indexes component group Xi and Xj , the compo-
nent consensus is represented using the following features:

Color difference:

φ1(Xi, Xj) = φ1(xi, xj) = |ci − cj |2, (6)

where ci and cj are color means of component i and j.
Spatial distance:(symbols are defined in Fig.4).

φ2(Xi, Xj) = φ2(xi, xj) =
vij

min(hi, hj)
. (7)

φ3(Xi, Xj) = φ3(xi, xj) =
dij

min(hi, hj)
. (8)

φ4 = φ22 and φ5 = φ23 are quadratic distances, which can pre-
vent the components of large distances from being grouped.

Alignment:(symbols are defined in Fig.4)

φ6(Xi, Xj) = φ6(xi, xj) =
oij

min(hi, hj)
. (9)

φ7(Xi, Xj) = φ7(xi, xj) =
|hi − hj |
min(hi, hj)

. (10)

Color variance: Assuming thatXi is merged withXj and
forms a new text candidate X̃ , the color variance of the new
text candidate is calculated as follows:

φ8(Xi, Xj) = variance(ci1, ..., ci, cj1, ..., cj), (11)

where ci1, ..., ci and cj1, ..., cj are component color means.

2.4. Text detection

Model training: The training of appearance models and the
calculation of consensus features require the component loca-
tions. However, the ground-truth only has the bounding boxes
of text regions, but has no component locations. To mark all
of the component samples by hand is expensive and time con-
suming. We use automatic component marking to solve this
problem. This procedure trains initial models and use these
models to boost the performance. In the procedure, a tex-
t sample can be divided into multiple text samples, each of
which contains more than three components. At each training
iteration, given the locations of text and component samples,
the weight vector WT = {αT , βT } in Eq.1 could be trained
with a Support Vector Machine.

Algorithm 1 Text detection algorithm

1. Initialization
Initialize the components xm,m = 1, ...,M as groups
Xm,m = 1, ...,M , each of which has one component.

2. Recursion

2.1. Search: Find the nearest groups (Xi, Xj) by
argmini,j{φ1(Xi, Xj) ·φ2(Xi, Xj) · φ3(Xi, Xj)}.

2.2. Coarse discrimination: If (Xi, Xj) fulfill the fol-
lowing conditions, go to 2.3.

1) The color distance of (Xi, Xj) in Eq.6 is smaller
than a threshold value;

2) The spatial distances of (Xi, Xj) in Eq.7 and
Eq.8 are less than 1.0, and the vertical overlap of
(Xi, Xj), Eq.9 is larger than 0.

2.3. Discrimination: Group and classify the text candi-
date X̃ = Xi ∪ Xj with F (X̃). If F (X̃) returns
positive, Xi ← X̃ , remove Xj .

2.4. If there is no component group pair that passes the
coarse discrimination, stop the recursion.

3. Merging overlapped text regions

Text detection: We first use the MSER algorithm for tex-
t component localization. MSERs from the luminance and
chrominance channels are extracted and pooled. A Gamma
correction on the image is used as a preprocessing step. Fol-
lowing Eqs.2 and 3, an agglomerative clustering algorithm is
used to group the components into text candidates, as well as
discriminate the grouped components at each step. The text
detection procedure is described in algorithm 1.

3. EXPERIMENTS

Three datasets are used for evaluation: the ICDAR’11 dataset
[21], the SVT dataset [16] and a multilingual text dataset [11].
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On the ICDAR’11 dataset, our evaluation protocol is consis-
tent with ICDAR’11 [21]. Precision, recall and a harmonic
mean (f-measure) are used as metrics. On the SVT and mul-
tilingual datasets, the bounding boxes in groundtruth are not
precise. So, precision is defined as the ratio between the area
of intersection regions and that of detected regions, and recall
is obtained as the ratio between area of detected groundtruth
regions and that of groundtruth regions. By adjusting the
threshold in Eq.(1), we can obtain pprecision and recall rates.

In Table 1, we compare our approach (IDM) with other
recent approaches on the ICDAR’11 dataset. It can be seen
that our approach has improvement in precision. In particu-
lar, it can produce a much higher precision without significant
recall drop. Table 2 compares our approach with two repre-
sentative approaches [16, 8] on the SVT dataset (performance
of above approaches is not available on this dataset). It can be
seen that our approach shows significant improvement in the
f-measure (more than 12%). Table 3 compares the proposed
approach and with Pan’s approach [11], which is designed for
multilingual text. It can be seen that our approach also has
significant improvement on the recall rate and f-measure.

Table 1. Performance (%) comparison on ICDAR’11 dataset.
Approach Precision Recall f
IDM(Shape filters) 85.26 63.99 73.11
IDM(Shape&stroke filters) 72.61 61.09 66.30
IDM(stroke filters) 79.26 54.28 64.43
Neumann and Matas[13]
(ICCV2013)

79.303 66.40 72.30

Koo (ICDAR’11 winner)[9] 82.98 62.47 71.28
Neumann and Matas [8] 73.10 64.71 68.70
Epshtein et al.[5] 73.00 60.00 66.00
Yi et al.[12] 67.22 58.09 62.32
TH-TextLoc System [21] 66.97 57.68 61.98

Table 2. Performance (%) comparison on SVT dataset.
Approach Precision Recall f
IDM(Shape filters) 67.52 43.89 53.20
IDM(Shape&stroke filters) 64.47 42.10 50.94
IDM(stroke filters) 56.22 41.31 47.63
Wang et al. [16] 67.008 19.00 40.48
Neumann and Matas [8] 32.90 19.10 24.17

Table 3. Performance (%) comparison on multilingual text.
Approach Precision Recall f
IDM(Shape filters) 74.86 60.13 66.70
IDM(Shape&stroke filters) 75.56 65.57 70.21
IDM(stroke filters) 65.43 54.41 59.42
Pan and Liu [11] 65.90 64.90 65.20

It should be noted that on the English text datasets (IC-
DAR’11 and SVT), the best performance is from the IDM
with shape filters, while on the Multilingual text dataset, the
best performance is from the IDM with the shape and stroke

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5. Text detection examples from the ICDAR’11, SVT
and multilingual datasetsp.

filters. This shows that for text with a relative small num-
ber of character classes, the shape appearance representation
is effective, while for text with a large number of character
classes, the combination of shape and stroke representation is
more effective. Fig.5 shows some detection examples.

With only shape filters, our approach runs at a speed of
about 1.6 images per second (for images of 720× 576 pixels)
on a PC with an Intel CORE i5 CPU. With both shape and
stroke filters, however, our approach require tens of seconds
to process one image, on average. The most computational
cost is about the convolution operations.

4. CONCLUSION

We described an approach that leverages both the shape,
stroke and consensus of components for text detection. The
reported 85% precision rate on ICDAR’11 dataset is the high-
est one among competing approaches. On the SVT dataset
with cluttered backgrounds and the multilingual dataset, our
approach has significant performance improvement, showing
robustness of our approach. In addition, the detection frame-
work is simplified by integrating text/non-text classification
and component grouping with one discriminative model.
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