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ABSTRACT 

 
View, appearance and pose variations make it difficult to 
detect human objects only by using linear classification 
methods. Inspired by the successful applications of L1-norm 
minimization learning (LML) for human detection, we 
propose a new nonlinear L1-norm minimization learning 
method (NL-LML). It integrates a nonlinear transformation 
with an LML optimization model for human detection. The 
NL-LML method first maps the samples into a space based 
on the kernel function, and then combines the reformulated 
samples in the transformed space with the LML model to 
learn a classifier. Histograms of orientated gradient (HOG) 
features are used as the feature descriptors, and the sliding 
window scheme is adopted to detect humans in images. 
Experiments on two human datasets validate the efficiency 
and effectiveness of the proposed method. 
 

Index Terms— Human detection, L1-norm 
minimization, Nonlinear classification, Kernel function 
 

1. INTRODUCTION 
 
Detecting humans in images is a very challenging task 
owing to the various views, appearances and poses of a 
human body, together with cluttered background under 
different illumination. A robust solution to this problem has 
extensive applications, such as video surveillance, image 
retrieval and some driver assistant systems etc. 

In the design of a typical human detection algorithm, 
feature representation and classification model are two basic 
aspects to be considered. In this paper, our work focuses 
more on developing an effective classification method. 

In recent years, the L1-norm has been employed to solve 
some important problems of image processing and computer 
vision. Its successful applications in the fields of 
compressed sensing of signals [9, 20] and face recognition 
[10] show its powerful ability to cope with problems. In 
addition, L1-norm minimization learning (LML) has been 
proposed to design linear classification methods for human 
detection [12-13], aiming to achieve the sparseness of 
features and simultaneously perform classification from the 
perspective of directly minimizing VC-dimension. The 
sparseness, which highlights the difference among features, 
can be viewed as an effective feature selection scheme [13].  

On the success of the LML, we employ it to construct a 
nonlinear method in this paper. Kernel technique--without 
engendering a high computational cost--has become a 
powerful tool to generalize classification ability. 
Furthermore, the application of kernel functions in Support 
Vector Machine (SVM) method has shown its ability of 
coping with nonlinear classification. However, the kernel 
inner product (kernelization), adopted by the SVM method, 
does not exist in the dual programming of the LML model. 
Therefore, it is infeasible to directly perform kernelization 
in the LML model to reach a nonlinear classification.  

In this paper, the proposed NL-LML method combines a 
nonlinear transformation induced by kernel functions with 
the LML model. Although the transformation is also 
dependent on the kernel function, it is essentially different 
from the kernelization technique used by SVM. The 
nonlinear classification and feature selection ability of the 
NL-LML method make it competitive to human object 
detection. 
Related work on human detection. Most state-of-the-art 
human detection systems need to extract the discriminative 
features from available image data and apply efficient 
classification techniques. 

In the aspect of feature representation, various features 
are proposed to represent a human body. The Haar-like 
wavelet features [8, 16], HOG features [1], Local Binary 
Pattern (LBP) features [4], Covariance (COV) features [3], 
Shape Context descriptors [19], the combination of LBP and 
HOG features [14], and Edgelet features [15] have been 
employed as descriptors. Lately, many variants of HOG are 
presented in [2, 21].  

For the issue of designing a classifier for human detection, 
popular methods are SVM and Adaboost, etc. Mohan et al. 
[7] use SVM to classify a human body. Viola et al. [8] 
employ the Adaboost to detect pedestrians. In [5], the 
authors combine local and global cues via a probabilistic 
segmentation. In [6], the logical reasoning method is used to 
discriminate whether a region covers a human body. In [1, 4, 
7] linear or kernel SVM is utilized for classification. In [2], 
the authors use linear SVM to train weak classifiers and 
then build an Adaboost cascade mechanism for human 
detection. In [17], Partial Least Squares (PLS) method is 
introduced to cope with the features in a high dimensional 
space and SVM is used to classify a human body. In [12-13], 
the LML and a cascaded LML are proposed to obtain a 
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sparse representation and make classification for human 
detection. 

 
2. NONLINEAR L1-NORM MINIMIZATION 

LEARNING  
 
2.1. The LML optimization model 
 
The LML optimization model aims to learn a sparse 
representation from a large amount of dense features. 
Furthermore, previous work has shown that the LML model 
pursues the VC-dimension minimization and further 
guarantees minimization of the upper bound on test error 
[12-13]. The LML optimization model is formulated as 
follows: 
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   denotes the L1-norm and jw is the jth 

dimension of the weight vector w . 1C is a predefined 

penalty parameter to balance the minimization of the 

misclassification degree and the weight vector. i is a slack 

variable that is used to measure the misclassification degree 

of the ith training sample. ix is the transformed feature 

vector of the ith sample and iy is its class label. N is the 

training sample number. In addition,   is a predefined 
parameter, which can guarantee the separability between the 

positives and negatives together with .i  

 
2.2. NL-LML 
 
According to the form of Model (1), the LML optimization 
model can be converted into a linear programming problem 
[9]. The dual form of the linear programming is also a linear 
one. Therefore, an elegant inner-product and kernelization 
do not exist in the dual programming of LML model due to 
the property of the L1-norm. In other words, it is infeasible 
to directly substitute the inner-product into the nonlinear 
kernel functions in the LML optimization to achieve the 
nonlinear classification.  

The inspiration of the nonlinear transformation based on 
the kernel function derives from the work of [18], in which 
a kernel function is viewed as a mapping to a low-
dimensional space. Meanwhile, this mapping can guarantee 
that the samples are linearly separable at a smaller margin, 
with a probabilistic error upper-bound in the transformed 
space. 

Following their work, we present a nonlinear method by 
combining the nonlinear transformation with the LML 
model. First, the samples are transformed into a new feature 
space induced by the kernel function. To eliminate the high 
correlation and redundancy of transformed features, it is 
necessary to find the principle components of the kernel 
matrix. Then, the samples are projected onto the principle 
components to obtain a new representation. It equals that 
each sample is reformulated in the new feature space. These 
reformulated samples are optimized by the LML model to 
solve the weight vector of the classifier.  

Mathematically, the feature vectors form a training 

set 1 2{ , }NS x x x   and a nonlinear mapping is 

constructed: 

:  Nx R   
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Nx K x x K x x K x x                   

 
(2) 

where ( , )K   is an arbitrary nonlinear kernel function. 
Generally, the form of kernel function between the sample 

ix and the sample jx determines the elements of kernel 

matrix. A general form of a kernel matrix can be expressed 
as follow:  
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   The matrix V consists of the top d normalized 
eigenvectors of ,K which are also the principle components 
of the matrix .K  Then, we can obtain a new representation 

of ix  by projecting the sample onto the matrix .V To be 

more specific, the new representation is like this:  

( ( )) ( )Tx V x                                (4) 

After these operations, we use the LML optimization 
model to solve a weight vector in the new feature space. The 
process of solving LML model is equivalent to finding the 
sparse representation of reformulated samples. The 
threshold of the classifier is determined by using the min-
max penalty function model in [13]. The final classifier is as 
follows:  

1
( ) ( ( ) ) ( ( ( )) )

d

w j
j

g x sign h x sign w x  


             (5) 

 
3. EXPERIMENTS 

 
The NL-LML method is mainly designed from the 

perspective of pure classification techniques, without 
concerning the other complex detection techniques, such as 
the cascade mechanism. Hence, the main experiments are 
compared with some similar methods, such as Linear and 
Kernel SVMs. To demonstrate the performance of this 
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method, we carry out experiments on the INRIA human 
dataset [1] and the Pri-SDL human dataset [11] respectively. 

 
3.1. Feature representation 
 
We use the simple and effective HOG descriptors as the 
original features to represent a human body. The feature 
extraction is based on the well-known R-HOG descriptor, 
which captures a local contour of an object. A 64x128 
training image is divided into blocks of size 16x16, which 
consist of 2x2 cells of size 8x8. Gradient orientations of 
pixels in a cell are projected onto discrete 9-orientation 
feature bins. Each block contains a 36-dimension 
concatenated vector of all its cells. Finally, a 3780-
dimension grayscale feature vector is extracted and 
normalized. Details of the feature extraction procedure can 
be found in [1].  
 
3.2. Evaluation and comparison 
 
There are more than 1300 training positives from MIT and 
Pri-SDL [11] for frontal view. Our negative training set 
consists of about 3000 images from the INRIA big training 
pictures. We perform the experiments on two test sets. One 
is the challenging the INRIA dataset with 288 images [1], in 
which humans are mostly in a standing position while it also 
covers some diverse body poses and complex backgrounds. 
The other is our Pri-SDL human dataset with 140 images 
[11], which is also challenging owing to incorporating the 
view variations of humans.  

During the training, the predefined penalty parameter 

1C is set between [30, 60], which is related to the range of 

the feature vector value. In Model (1),  is set to 1.0. The 
Radial Base function (RBF) is chosen to form the kernel 
matrix. When the parameter of RBF   ranges from 0.01 to 
10, we have found 10 is better for the human detection with 
respect to training error. The Singular Value Decomposition 
(SVD) is employed to obtain the principle components of 
the kernel matrix. The dimension of the transformed 
space d is determined by the ratio of the maximum 
eigenvalue to the minimum eigenvalue. d is chosen 
empirically when the ratio ranges from 10 to 100. This 
equals that as few as possible eigenvectors are selected on 
the condition of meeting the positive definite property of 
RBF kernel matrix.  

When conducting human detection, we classify the image 
with a sliding window approach in multi-scales by the 
learned classifier ( )g x . Recall Rate and False Positives Per 

Window (FPPW) are used to quantitatively evaluate the 
NL-LML method (see the Eq.(6) and (7)). 

It is defined as a correct detection if the overlapping 
between the predicted region and the ground-truth region is 
more than 50 percent, which is the criterion of [1]. We 
implement SVM methods by using the open source codes 

LibSVM. Fig.1 shows the results on the INRIA dataset, and 
Fig.2 on the Pri-SDL one. It can be seen that the proposed 
NL-LML method outperforms the LML method [12], Linear 
SVM and kernel SVM on both of the two datasets. 
Although the NL-LML method is not as fast as the Kernel 
SVM method, it achieves a better result for human detection 
owing to the sparseness. We will improve the NL-LML 
method in terms of speed. 

#
Re  

#

RightPositiveDetections
call Rate

TotalPositive
                 (6) 

#

# Im

FalsePositiveDetections
FPPW

Total ageWindows
                       (7) 

 
Fig.1 Performance and comparisons on INRIA dataset 

 

 
Fig.2 Performance and comparisons on Pri-SDL dataset 

 
3.3 Detection examples 
 

In Figure 3, we show some detection examples without 
merging results from multi-scales. From Fig.3 (a) to Fig.3 
(f), most humans are correctly located in spite of the 
variation of background, occlusion and views. In Fig.3 (a) 
all of the people are correctly located in spite of their multi-
views. In Fig.3 (b), the example covers the subject’s 
unusual pose (i.e. riding a bicycle), which is also correctly 
detected. In Fig.3 (c), the girl with the green T-shirt is 
occluded by the front car and can be found via our method. 
In Fig.3 (f), there are some false detection windows 
covering the part of a human body and a baby carriage. The 
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false detections may be brought out by the complex 
structure of the objects, which can be avoided by integrating 
more powerful feature representations in the future work. 

  
(a)                                     (b)    

 
                  (c)                                          (d)                     

 
                     (e)                                        (f) 

Fig.3 Detection examples, without multi-scale integration. 
 

4. CONCLUSIONS AND FUTURE WORKS 
 

In this paper, we propose a new nonlinear method for 
human detection in images, which integrates feature 
selection in transformed space with classifier construction to 
achieve a nonlinear classification. Experiments validate the 
effectiveness of the NL-LML approach. In the future, the 
cascade mechanism and other detail techniques, such as 
segmentation, will be added into our NL-LML method to 
attain higher efficiency. Furthermore, we will justify the 
performance of the proposed method by comparing it with 
more representative methods and applying it to other objects, 
e.g., vehicles. 
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