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Abstract
In this paper, we establish a baseline for object symmetry

detection in complex backgrounds by presenting a new
benchmark and an end-to-end deep learning approach,
opening up a promising direction for symmetry detection
in the wild. The new benchmark, named Sym-PASCAL,
spans challenges including object diversity, multi-objects,
part-invisibility, and various complex backgrounds that
are far beyond those in existing datasets. The proposed
symmetry detection approach, named Side-output Residual
Network (SRN), leverages output Residual Units (RUs)
to fit the errors between the object symmetry ground-
truth and the outputs of RUs. By stacking RUs in a
deep-to-shallow manner, SRN exploits the ‘flow’ of errors
among multiple scales to ease the problems of fitting com-
plex outputs with limited layers, suppressing the complex
backgrounds, and effectively matching object symmetry of
different scales. Experimental results validate both the
benchmark and its challenging aspects related to real-
world images, and the state-of-the-art performance of our
symmetry detection approach. The benchmark and the code
for SRN are publicly available at https://github.
com/KevinKecc/SRN .

1. Introduction
Symmetry is pervasive in visual objects, both in nature

creatures like trees and birds, and artificial objects like
aircrafts and oil pipes in aerial images. Symmetric parts
and their connections constitute a powerful part-based de-
composition of shapes [19, 25], providing valuable cue for
the task of object recognition. With symmetry constrained,
the performance of image segmentation [24], foreground
extraction [5], object proposal [10], and text-line detection
[29] could be significantly improved.

The early symmetry detection, named skeleton extrac-
tion, usually involves only binary images [8, 18]. In recent
∗This work was supported in part by the CSC, China.
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Figure 1: We propose a new benchmark, named Sym-
PASCAL, for object symmetry detection in the wild.
Compared with SYMMAX [26], WH-SYMMAX [21], and
SK506 [22], our Sym-PASCAL spans challenges including
object diversity, multi-objects, part-invisibility and various
complex backgrounds. (Best viewed in color)

years, symmetry detection tends to process color images
[13, 14], but still limited to cropped image patches with
little background. This limitation is partially due to the lack
of fundamental benchmarks, considering that most existing
symmetry detection datasets, e.g., SYMMAX [26], WH-
SYMMAX [21], and SK506 [22], lack either object-level
annotation or the in-the-wild settings, i.e., multi-objects,
part-invisibility, and various complex backgrounds.

In this paper, we present a new challenging bench-
mark with complex backgrounds, and an end-to-end deep
symmetry detection approach that processes in-the-wild
images, and target at opening up a promising direction for
practical applications of symmetry. The new benchmark,
named Sym-PASCAL, is composed of 1453 natural images
with 1742 objects derived from the PASCAL-VOC-2011
[4] segmentation dataset. Such a benchmark is more
close to practical applications with challenges far beyond
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those in existing datasets: (1) diversity of objects: multi-
class objects with different illuminations and viewpoints;
(2) multi-object co-occurrence: multiple objects exist in
a single image; (3) part-invisibility: objects are partially
occluded; and (4) complex backgrounds: the scenes where
object located could be contextually cluttered.

For the in-the-wild symmetry detection problem, we
explore the deep Side-output Residual Network (SRN)
that directly outputs response image about object symme-
try. SRN roots in the Holistically-nested Edge Detection
(HED) network [28] but updates it by stacking multiple
Residual Units (RUs) on the side-outputs. The Residual
Unit (RU) is designed to fit the error between the object
symmetry ground-truth and the outputs of RUs, which
is computationally easier as it pursuits the minimization
of residuals among scales rather than only struggles to
combine multi-scale features to fit the object symmetry
ground-truth. The RU we defined not only significantly
improves the performance of SRN, but also solves the
learning convergence problem left by the baseline HED
method. By stacking multiple RUs in a deep-to-shallow
manner, the receptive fields of stacked RUs could adaptively
match the scale of symmetry. The contributions of this
paper include:
• A new object symmetry benchmark that spans chal-

lenges of diversity, multi-objects, part-invisibility, and
various complex backgrounds, promoting the symme-
try detection research to in-the-wild scenes.
• A Side-output Residual Network that can effectively

fit the errors between ground-truth and the outputs of
the stacked RUs, enforcing the modeling capability to
symmetry in complex backgrounds, achieving state-
of-the-art symmetry detection performance in the wild.

2. Related Works
For the applicability and beauty, symmetry has attracted

much attention in the past decade. The targets of symmetry
detection evolute from binary images to color object im-
ages, while the symmetry detection approaches update from
hand-crafted to learning based.

Benchmarks: In the early research, symmetry ex-
traction algorithms are qualitatively evaluated on quite
limited binary shapes [8]. Such shapes are selected from
the MPEG-7 Shape-1 dataset for subjective observation
[2]. Later, Liu et al. [13] use very a few real-world
images to perform symmetry detection competitions. To
be honest, SYMMAX [26] could be regarded as an au-
thentic benchmark that contains hundreds of training/testing
images with local symmetry annotation. But the local
reflection symmetry it defined mainly focuses on low-level
image edges and contours, missing the high-level concept
of objects. WH-SYMMAX [21] and SK506 [22] are
recently proposed benchmarks with annotation of object
skeletons. Nevertheless, WH-SYMMAX is simply com-

posed of side-view horses while SK506 consists objects
with little background. Neither of them involves multiple
objects in complex backgrounds, leaving a plenty of room
for developing new object symmetry benchmarks.

Methods: Early symmetry detection methods, also
named skeleton extraction [8, 18], are mainly developed
for the binary images by leveraging morphological image
operations. When processing color images, they usually
need a contour extraction or an image segmentation step as
pre-processing. Considering that segmentation of in-the-
wild images remains a research problem, the integration of
color image segmentation and symmetry detection not only
increases the complexity but also accumulates the errors.

Researchers have tried to extract symmetry in color
images based on multi-scale super-pixels. One hypothesis
is that the object symmetry axes are the subsets of lines
connecting the center points of super-pixels [11]. Such line
subsets are explored from the super-pixels using a sequence
of deformable disc models extracting the symmetry pathes
[9]. Their consistence and smoothness are enforced with
spatial filters, e.g., a particle filter, which link local skeleton
segments into continuous curves [27]. Due to the lack
of object prior and the learning module, however, these
methods are still limited to handle the images with simple
backgrounds.

More effective symmetry detection approaches root in
powerful learning methods. On the SYMMAX benchmark,
the Multiple Instance Learning (MIL) [26] is used to train
a curve symmetry detector with multi-scale and multi-
orientation features. To capture diversity of symmetry pat-
terns, Teo et al. [24] employ the Structured Random Forest
(SRF) and Shen et al. [21] use subspace MIL with the same
feature. Nevertheless, as the pixel-wise hand-craft feature
is computationally expensive and representation limited,
these methods are intractable to detect object symmetry in
complex backgrounds.

Most recently, a deep learning approach, Fusing Scale-
associated Deep Side-outputs (FSDS) [22], is shown to be
capable of learning unprecedentedly effective object skele-
ton representations on WH-SYMMAX [21] and SK506
[22]. FSDS takes the architecture of HED [28] and su-
pervises its side-outputs with scale-associated ground-truth.
Despite of its state-of-the-art performance, it needs the
intensive annotations of the scales for each skeleton point,
which means that it uses much more human effort than other
approaches when preparing the training data. Compared
with FSDS, our proposed SRN can adaptively match the
scales of symmetry, without using scale-level annotation.

3. The Sym-PASCAL Benchmark
Symmetry annotation involves pixel-level fine details,

and is time consuming. We thus leverage the semantic seg-
mentation ground-truth and a skeleton generation algorithm
to aid the annotation of symmetry [20].



(a) Unavailable (b) Available (easy) (c) Available (hard)

Figure 2: Object symmetry annotation. The green masks
are annotated semantic segmentation ground-truth. The
brown masks are extended from the segmentation. The red
lines are the skeletons of semantic segmentation masks. The
yellow and blue lines are the skeletons corresponding to the
extended masks. The blue lines are the object symmetry
ground-truth. (Best viewed in color)

3.1. Categorization and Annotation
Sym-PASCAL is derived from the PASCAL-VOC-2011

segmentation dataset [4] which contains 1112 training im-
ages and 1111 testing images from 20 object classes includ-
ing: person, bird, cat, cow, dog, horse, sheep, aero plane,
bicycle, boat, bus, car, motorbike, train, bottle, chair, dining
table, potted plant, sofa, and tv/monitor.

We categorize the 20 classes of objects into symmetry-
available and symmetry-unavailable, Fig. 2. The objects
that contain lots of discontinuous parts in the segmentation
masks are symmetry-unavailable, specifically potted plant,
dining table, motorbike, bicycle, chair and sofa, are not
selected, Fig. 2a. The other 14 object classes are symmetry-
available. Some of objects are slender and thus easy
to annotate, Fig. 2b, and others with small length-width
ratio or occlusion are difficult to annotate, Fig. 2c. In
total, 648/787 images are selected and annotated from the
PASCAL-VOC-2011 training and testing sets. Among
these images, 31.3% are with multi-object and 45.6% are
with part-invisibility.

For the images where object symmetry is obvious, i.e.,
objects are composed of slender parts that are easy to
annotate, we directly extract symmetry on the object seg-
mentation masks using a skeleton extraction algorithm [20],
Fig. 2b. For such objects, the object symmetry (marked with
blue curves) and their skeleton (marked with red curves)
are consistent. For the images where object symmetry is
not obvious, we manually extend the semantic segmentation
masks and annotate symmetry on them, Fig. 2c. For wide
object as shown on the top of Fig. 2c, we extend the mask
along the direction of the long axis of the object and choose
the long axis as ground-truth. For occluded objects as
shown at the bottom of Fig. 2c, we need to manually fill
the missed parts of segmentation masks. For the pictures
that contain partial objects, we empirically imagine the
occluded parts to extend the segmentation masks. With

these processing above, the skeleton extraction algorithm
[20] is used to extract symmetry on the object segmentation
masks. The object symmetry ground-truth is set as the
skeleton points within the segmentation masks, shown as
the blue curves in Fig. 2c.

3.2. Discussion
In what follows, we compare the proposed benchmark

with three other representative ones, SYMMAX [26], WH-
SYMMAX [21], and SK506 [22].

SYMMAX is derived from BSDS300 [1], which con-
tains 200/100 training and testing images. It’s annotated
with local reflection symmetry on both foreground and
background. Considering that most computer vision tasks
focus on the foreground, it’s more meaningful to use object
symmetry instead of the symmetry about the whole image.
WH-SYMMAX is developed for object skeletons, but it is
made up of only cropped horse images, which are not com-
prehensive for general object symmetry. SK506 involves
skeletons about 16 classes of objects. Nevertheless, their
backgrounds are too simple to represent in-the-wild images.

As shown in Tab. 1. the proposed benchmark involves
more training and testing images. Particularly, these images
involve complex backgrounds, multiple objects and/or oc-
clusions. It is developed for end-to-end object symmetry in-
the-wild, providing the protocol to evaluate whether or not
an algorithm can detect symmetry without using additional
object detectors. In Sym-PASCAL, the images for each
class are more balanced than other datasets, Fig. 3b, except
that the number of human objects is larger than others. In
contrast, in SK506 the objects from different classes have
more unbalance, Fig. 3a.
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Figure 3: Object-class distributions of the SK506 and Sym-
PASCAL datasets.

SYMMAX
WH-

SK506
Sym-

SYMMAX PASCAL
Data local object object object
type symmetry skeleton skeleton symmetry
Image in-the-wild simple simple in-the-wild
type image image image image
#object – 1 16 14
#training 200 228 300 648
#testing 100 100 206 787

Table 1: Comparison of four symmetry detection datasets.
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Figure 4: The architectures of proposed Side-Output Residual Network (SRN) by stacking Residual Units (RUs) in (a) deep-
to-shallow and (b) shallow-to-deep strategies. The RUs are marked with dashed boxes. With the deep supervision both on the
input and output of RU, the residual between the ground-truth and output of RU (RUOP) is computed hierarchically. Along
the stacking orientation, the residual decreases so that the RUOP is closer to ground-truth.

4. Side-output Residual Network
The proposed Side-output Residual Network (SRN)

roots in the well-designed output Residual Unit (RU) and
a deep-to-shallow learning strategy. Given the symmetry
ground-truth, the SRN is learned in an end-to-end manner.

4.1. Output Residual Unit

Given training images, the end-to-end symmetry learn-
ing pursuits deep network parameters that best fit the sym-
metry ground-truth. Such a learning objective is different
from that of learning a classification network [7]. The
RU defined for output, Fig. 5, is essentially different from
that in the residual network defined for features [7]. With
the deep supervision both on the input and output of RUs,
the residual of the ground-truth is computed. Formally,
denoting the input of RU as r and the additional mapping
as F(y), the deep supervision is written as:{

r ≈ y
r + F(y) ≈ y , (1)

where r and r + F(y) are the input and output of the RU,
respectively. F(y) is regarded as the residual estimation of
y. RUs provide shortcut connections between the ground-
truth and outputs from different scales, which implies a
functional module for the ‘flow’ of errors among different
scales, and thus make it easier to fit complex outputs with
higher adaptivity. To the extreme, if an input r is optimal,
it would be easier to push the residual to zero than to fit the
additional mapping F(y).

( )y

( )r y

r

y

Figure 5: The output Residual Unit (RU). By supervision
both on the input and output of RU, the additional mapping
F(y) estimates the residual of y.

4.2. Network Architectures

By stacking the RUs defined, we implement a kind of
new side-output deep network, named Side-output Residual
Network (SRN), which incorporates the advantages of both
the scale adaptability and residual learning. For SRN, the
input of the first RU can be chosen as the shallowest side-
output or deepest side-output, which derives two versions
of SRN, Fig. 4. In what follows, the RU is numbered as the
side-output (SOP) index, and the output of the i−th RU is
denoted as RUOPi, for short.

Deep-to-shallow. In this SRN architecture, RUs are
stacked from deep to shallow, Fig. 4a. Assume that si is
the i-th side-output, and ri+1, ri are the input and output of
i-th RU respectively . For the first stacked RU2, the input is
set as the deepest SOP3, i.e., r3 = s3. And SOP2 is used
to learn the residual between RUOP3 and the ground-truth,
which updates RUOP3 to RUOP2. The RUs are stacked in
order until the shallowest side-output, in other words, the
inputs of which are set as the output of the former one.
Sigmoid is used as classifier on the output of the last stacked
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Figure 6: The implementation of the i-th RU.

RU to generate the final output image.
The implementation of RU in the deep-to-shallow archi-

tecture is shown in Fig. 6a. It’s noting that the output size
of RU in this architecture is same as the side-output rather
than the input image. Therefore, a Gaussian deconvolution
layer is introduced to the output of RU. As the up-sampling
is non-linear transformation, a weight layer is stacked to
improve the scale adaptability. Instead of adding up-
sampled ri+1 and si directly, a 1 × 1 convolutional layer
is utilized to generate ri. The RU is formulated,

ri = wi
c(si + wr

i ri+1), (2)

where wi
c, wi

r are the convolutional weights of concatena-
tion layer and the up-sampled ri+1. With Eqs. (1) and (2),
the output residual Fi(y) is computed,

Fi(y) = wc
i · si + (wr

iw
c
i − 1)ri+1. (3)

When wr
i · wc

i approximates 1.0, the residual is related to
only the side-output. To the extreme, along the stacking
orientation of RUs, the residual F(y) approximates 0.0.

As we know, the deep layers of CNNs contain features
that ignore the image details but capture high-level repre-
sentations. Therefore, a deep layer SOP3 is expected to
be closer to the optimal training solution. RU2 pushes
the residual to zero and the response map RUOP2 is
similar with the response map RUOP3. In the deep-to-
shallow architecture, the deepest side-output is used as a
good initialization for the ground-truth, therefore, the deep-
to-shallow architecture contributes better results than the
shallow-to-deep one, as shown in Sec. 5.2.1.

Shallow-to-deep. The architecture is shown in Fig. 4b
and the RU in Fig. 6b. The side-outputs are up-sampled
by the Gaussian deconvolution layer so that their size is
consistent with the input image. Similar with Eq. (3), the
residual is computed,

Fi(y) = ws
iw

c
i · si + (wc

i − 1)ri+1, (4)

where wi
s is weight parameter of the up-sampled si. Fig.

4b indicates that the shallowest RUOP1 has lots of false
positive pixels compare to ground-truth as SOP1 represents
local structure of the input image. Along the stacking

orientation, the RU3 reduces the residual so that the outputs
of RU3, i.e., RUOP3, are closer to ground-truth compared
to RUOP2.

4.3. Learning

Given the object symmetry detection training dataset
S = {(Xn, Yn)}Nn=1 with N training pairs, where Xn =

{x(n)j , j = 1, · · · , T} and Yn = {y(n)j , j = 1, · · · , T}
are the input image and the ground-truth binary image with
T pixels, respectively. y

(n)
j = 1 denotes the symmetry

pixel and y
(n)
j = 0 denotes non-symmetry pixel. We

subsequently drop the subscript n for notational simplicity,
since we consider each image independently. We denote
W as the parameters of the base network. Supposing the
network has M side-outputs, the M -th side-output is set
as the basic output and M − 1 RUs are used. We use the
architecture of Fig. 4a as example, in which M = 3 and
RUOP3 is the basic output. Fig. 4b has similar formulation.
For the basic output, the loss is computed,

Lb(W, wb) = −β
∑

j∈Y+

log Pr(yj = 1|X;W, wb)

− (1− β)
∑

j∈Y−

log Pr(yj = 0|X;W, wb),
(5)

where wb is the classifier parameter for the basic out-
put. Y+ and Y− respectively denote the symmetry and
non-symmetry ground-truth label sets. The loss weight
β = |Y+|/|Y |, and |Y+| and |Y−| denote the symmetry
and non-symmetry pixel number, respectively. Pr(yj =
1|X;W, wb) ∈ [0, 1] is the sigmoid prediction of the basic
output that measures how likely the point to be on the
symmetry axis. For the i-th RU, i = M − 1, · · · , 1, the
loss is computed,

Li(W, θi, wi) = −β
∑

j∈Y+

log Pr(yj = 1|X;W, θi, wi)

− (1− β)
∑

j∈Y−

log Pr(yj = 0|X;W, θi, wi)

(6)
where θi = (wc

i , w
s
i ) is the convolutional parameter of the

concatenation layers and side-output layers after the i-th
RU. wi is the classifier parameter for the output of i-th RU.
The loss function for all the stacked RUs is obtained by

L(W, θ, w) = αMLb(W, wb) +

1∑
i=M−1

αiLb(W, θi, wi).

(7)
Finally, we obtain the optimal parameters,

(W, θ, w)∗ = argminL(W, θ, w). (8)

In the testing phase, giving an image X , a symmetry
prediction map is output by the last stacked RU,

Ŷ = Pr(yj = 1|X;W∗, θ∗, w∗). (9)



4.4. Difference to Other Networks
The proposed SRN has significant difference with other

end-to-end deep learning implementations, i.e., HED [28],
FSDS [22], and Laplacian Reconstruction [6]. In HED,
the deep supervision is applied on side-outputs directly,
while in SRN the deep supervision is applied on the outputs
of RUs. According to (2), each RU contains the infor-
mation of two side-outputs at least, endowing SRN with
the capability to smoothly model the multi-scale symmetry
across deep layers. FSDS is an improvement of HED that
specifies scales for side-outputs, which requires additional
annotation for each scale. In contrast, SRN models the
scale information with RUs, without any multi-scale an-
notations. SRN takes the idea of Laplacian reconstruction
that uses a mask to indicate the reconstruction residual for
segmentation. The difference lies in that SRN pursuits scale
adaptability while the Laplacian reconstruction focuses on
multi-scale error minimization.

5. Experimental results

The proposed SRN is first evaluated and compared on
the proposed Sym-PASCAL benchmark. It is then evalu-
ated and compared with the state-of-the-art deep learning
approaches on other popular datasets including SYMMAX
[26], WH-SYMMAX [21], and SK506 [22].

5.1. Experimental Setup
Implementation details. The SRN is implemented

following the parameter setting of HED [28], by fine-
tuning the pre-trained 16-layer VGG net [23]. The hyper-
parameters of SRN include: mini-batch size (1), learning
rate (1e-8 for in-the-wild image datasets and 1e-6 for
simple image datasets), loss-weight for each RU output (1),
momentum (0.9), and initialization of the nested filters (0),
weight decay (0.002), and maximum number of training
iterations (18,000). In the testing phase, a non-maximal
suppression (NMS) algorithm [3] is applied on the output
map to obtain object symmetry.

Evaluation Metrics. The precision-recall metric with
F-measure is used to evaluate the performance of symmetry
detection, as introduced in [26]. To obtain the precision-
recall curves, the detected symmetry response is first thresh-
olded into a binary map, and then matched with the ground-
truth symmetry masks. By changing the threshold value, the
precision-recall curve is obtained and the best F-measure is
computed.

5.2. Results on Sym-PASCAL
5.2.1 SRN setting

SRN is first evaluated on the new benchmark with dif-
ferent settings, Tab. 2. Architectures: Tab. 2 shows
that SRN with the deep-to-shallow architecture (F-measure

Architecture Augumentation Conv1 F-measure

shallow-deep
1× with 0.381

w/o 0.397

0.8×, 1×, 1.2× with 0.371
w/o 0.396

deep-shallow
1× with 0.443

w/o 0.443

0.8×, 1×, 1.2× with 0.384
w/o 0.397

Table 2: Performance of SRN under different settings on
the Sym-PASCAL benchmark.

0.443) performs significantly better than the shallow-to-
deep architecture (F-measure 0.397). It confirms that the
deep-to-shallow architecture is easier to reduce the residual
than the shallow-to-deep one as the initialization is better.
Data Augmentation: Data augmentation can aggregate the
training datasets. In this work, image rotation, flipping,
up-sampling, and down-sampling (multi-scale) are used
for data argumentation. For each scale, we rotate the
training images every 90 degree and flip each one with
different axis. The performance with/without multi-scale
data argumentation is compared. Experiments show that
the F-measure decreases with multi-scale augmentation,
even though it produces more training data. The reason
is analyzed as follows. The symmetry ground-truth is
made up of curves with one-pixel thickness. The up-
sampling operation produces curves that have thickness
lager than one pixel, and the down-sampling operation
produces discontinuous symmetry curves. Conv1: FSDS
[22] doesn’t use the conv1 stage of VGG as the size of
receptive field is so small (only 5) that introduces local
noise of symmetry (too small to capture any symmetry
response). The negative impact of small receptive field with
SRN is also observed. By pairwise comparison in Tab. 2,
the F-measure without conv1 is slightly better than that with
conv1.

5.2.2 Performance Comparison
Using the deep-to-shallow SRN with data augmentation but
without conv1, we compare the performance of SRN with
the state-of-the-art, as shown in Fig. 8 and Tab. 3. All the
compared results are generated by running the open source
code with default parameter settings.

It’s observed that the traditional methods perform poorly
and are time consuming. The best F-measure of traditional
methods is 0.174, indicating the challenge of the proposed
benchmark. Lindeberg [12] runs fastest with 5.79s per
frame. Levinshtein [11], MIL [26], Lee [9] and Particle
Filter [27] need much more running time for the complex
features they used.

The end-to-end deep learning methods perform well.
HED gets the F-measure 0.369 and uses only ten mil-
liseconds to process an image. FSDS is degenerated to
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Figure 7: Object symmetry detection results on the Sym-PASCAL dataset: the first and second columns for one-object images
with/without complex background, the third and forth columns for multi-object images with/without complex background,
and the last two columns for images with occluded objects. (Best viewed in color)

HED when the scale information is not used. Its F-
measure reaches 0.418 when slicing and concatenating of
each side-output is used. Our proposed SRN gets the best
performance with F-measure 0.443 which outperforms the
baseline HED approach by 7.4%. It also outperforms the
state-of-the-art method, FSDS, by 2.5%.

To show the effectiveness of the end-to-end pipeline in
complex backgrounds, we compare the proposed SRN with
a two-stage approach composing of semantic segmenta-
tion/object detection and skeleton extraction. We choose
the best segmentation network FCN-8s [15] to localize
objects, and the skeleton method [20] to extract symmetry,
getting F-measure 0.386, Fig. 8. We also compare the
FSDS [22] on the detection results from the state-of-the-
art object detection methods, FasterRCNN [17] and YOLO
[16]. As shown in Fig. 8, the F-measures are 0.343 and
0.354, respectively. Experiments results indicate that the
proposed end-to-end learning approach is a more effective
and efficient way to detect object symmetry than the two-
stage approaches.

The object symmetry detection results by the state-of-
the-art deep leaning approaches are illustrated in Fig. 7.
From the first and second columns, it’s observed that the
object symmetry obtained by our SRN approach in one-
object images is more consistent with the ground-truth
with/without complex background. The third and forth
columns show examples that contain multiple objects, in
which the proposed SRN approach achieves more accurate
object symmetry detection results than other approaches.
The last two columns show the results of images with
occluded objects.
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Figure 8: Precision-recall comparison of different ap-
proaches on the Sym-PASCAL dataset.

Methods F-measure Runtime(s)
Partical Filter [27] 0.129 25.30
Levinshtein [11] 0.134 183.87

Lee [9] 0.135 658.94
Lindeberg [12] 0.138 5.79

MIL [26] 0.174 80.35
HED (baseline) [28] 0.369 0.10†

FSDS [22] 0.418 0.12†
FasterRCNN [17]+FSDS [22] 0.343 0.33†

YOLO [16]+FSDS [22] 0.354 0.12†
FCN [15]+[20] 0.386 0.76†

SRN (ours) 0.443 0.12†

Table 3: Performance comparison of the state-of-the-art
approaches on the Sym-PASCAL dataset. †GPU time with
NVIDIA Tesla K80
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Figure 9: The precision-recall curves of SYMMAX, WH-SYMMAX, and SK506 datasets.

datasets Levinshtein Lee [9] Lindeberg Particle MIL [26] HED [28] FSDS [22] SRN(ours)[11] [12] Filter [27]
SYMMAX – – 0.360 – 0.362 0.427 0.467 0.446

WH-SYMMAX 0.174 0.223 0.277 0.334 0.365 0.732 0.769 0.780
SK506 0.217 0.252 0.227 0.226 0.392 0.542 0.623 0.632

Table 4: Performance comparison of the state-of-the-art approaches on the SYMMAX, WH-SYMMAX, and SK506 dataset.
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Figure 10: The loss and F-measure comparison of HED and
SRN. (Best viewed in color)

5.3. Results on Other Datasets
The performances on other three symmetry datasets are

shown in Fig. 9 and Tab. 4. Similar with Sym-PASCAL,
the deep learning based methods get significantly better
performance on all the datasets, especially for the simple
image datasets, WH-SYMMAX and SK506. Compared
with the baseline HED, the proposed SRN improves the F-
measure from 0.427 to 0.446, 0.732 to 0.780, 0.542 to 0.632
on SYMMAX, WH-SYMMAX and SK506, respectively.

5.4. Learning Convergence
The learning convergence of the baseline HED and the

proposed SRN is shown in Fig. 10. It can be clearly
seen that HED has a problem of slow convergence during
learning, despite the fact that it achieves good performance
on the edge and symmetry detection tasks. The reason
could be that the complex backgrounds of input images
seriously interrupt the end-to-end (image-to-mask) learning
procedure. Benefits from the output residual fitting, the loss

curve of the proposed SRN tends to converge, Fig. 10. In
addition, HED needs 12K learning iterations to get the best
performance while SRN needs only 3K iterations to get the
same performance.

6. Conclusion
Symmetry detection has great applicability in computer

vision yet remains not being well solved, as indicated by
the low performance (often lower than 50%) of the state-
of-the-art methods. In this work, we release a new object
symmetry benchmark, as well as propose the Side-output
Residual Network, establishing a strong baseline for object
symmetry detection in the wild. The new benchmark, with
challenges related to real-world images, is validated to be
a good touchstone of various state-of-the-art approaches.
The proposed Side-output Residual Network, with well-
defined and stacked Residual Units, is validated to be
more effective to perform symmetry detection in complex
backgrounds. With the adaptability to object scales, the
robustness to complex backgrounds, and the end-to-end
learning architecture, the Side-output Residual Network has
great potential to process a class of end-to-end (image-to-
mask) computer vision tasks.

Acknowledgement
This work is partially supported by NSFC under Grant

61671427, Beijing Municipal Science and Technology
Commission under Grant Z161100001616005, and
Science and Technology Innovation Foundation of Chinese
Academy of Sciences under Grant CXJJ-16Q218. Tekes,
Academy of Finland and Infotech Oulu are also gratefully
acknowledged.



References
[1] P. Arbelaez, M. Maire, C. C. Fowlkes, and J. Malik. Contour

detection and hierarchical image segmentation. IEEE
Transaction on Pattern Analysis and Machine Intelligence,
33(5):898–916, 2011. 3

[2] X. Bai, L. J. Latecki, and W. Liu. Skeleton pruning by
contour partitioning with discrete curve evolution. IEEE
Transaction on Pattern Analysis and Machine Intelligence,
29(3):449–462, 2007. 2

[3] P. Dollár and C. L. Zitnick. Fast edge detection using
structured forests. IEEE Transaction on Pattern Analysis and
Machine Intelligence, 37(8):1558–1570, 2015. 6

[4] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The PASCAL Visual Object Classes
Challenge 2011 (VOC2011) Results. http://www.pascal-
network.org/challenges/VOC/voc2011/workshop/index.html.
1, 3

[5] H. Fu, X. Cao, Z. Tu, and D. Lin. Symmetry constraint for
foreground extraction. IEEE Transaction on Cybernetics,
44(5):644–654, 2014. 1

[6] G. Ghiasi and C. C. Fowlkes. Laplacian pyramid
reconstruction and refinement for semantic segmentation. In
European Conference on Computer Vision, pages 519–534,
2016. 6

[7] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual
learning for image recognition. In International Conference
on Computer Vision and Pattern Recognition, pages 770–
778, 2016. 4

[8] L. Lam, S. Lee, and C. Y. Suen. Thinning methodologies
- A comprehensive survey. IEEE Transaction on Pattern
Analysis and Machine Intelligence, 14(9):869–885, 1992. 1,
2

[9] T. S. H. Lee, S. Fidler, and S. J. Dickinson. Detecting
curved symmetric parts using a deformable disc model. In
International Conference on Computer Vision, pages 1753–
1760, 2013. 2, 6, 7, 8

[10] T. S. H. Lee, S. Fidler, and S. J. Dickinson. Learning to
combine mid-level cues for object proposal generation. In
International Conference on Computer Vision, pages 1680–
1688, 2015. 1

[11] A. Levinshtein, S. J. Dickinson, and C. Sminchisescu.
Multiscale symmetric part detection and grouping. In
International Conference on Computer Vision, pages 2162–
2169, 2009. 2, 6, 7, 8

[12] T. Lindeberg. Edge detection and ridge detection with
automatic scale selection. International Journal of Computer
Vision, 30(2):117–156, 1998. 6, 7, 8

[13] J. Liu, G. Slota, G. Zheng, Z. Wu, M. Park, S. Lee,
I. Rauschert, and Y. Liu. Symmetry detection from realworld
images competition 2013: Summary and results. In
International Conference on Computer Vision and Pattern
Recognition Workshops, pages 200–205, 2013. 1, 2

[14] Y. Liu, H. Hel-Or, C. S. Kaplan, and L. J. V. Gool.
Computational Symmetry in Computer Vision and Computer
Graphics, volume 5. 2010. 1

[15] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional
networks for semantic segmentation. In International

Conference on Computer Vision and Pattern Recognition,
pages 3431–3440, 2015. 7

[16] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi.
You only look once: Unified, real-time object detection. In
International Conference on Computer Vision and Pattern
Recognition, pages 779–788, 2016. 7

[17] S. Ren, K. He, R. B. Girshick, and J. Sun. Faster R-CNN:
towards real-time object detection with region proposal
networks. In Advances in Neural Information Processing
Systems, pages 91–99, 2015. 7

[18] P. K. Saha, G. Borgefors, and G. S. di Baja. A survey on
skeletonization algorithms and their applications. Pattern
Recognition Letters, 76:3–12, 2016. 1, 2

[19] T. B. Sebastian, P. N. Klein, and B. B. Kimia. Recognition of
shapes by editing their shock graphs. IEEE Transaction on
Pattern Analysis and Machine Intelligence, 26(5):550–571,
2004. 1

[20] W. Shen, X. Bai, R. Hu, H. Wang, and L. J. Latecki. Skeleton
growing and pruning with bending potential ratio. Pattern
Recognition, 44(2):196–209, 2011. 2, 3, 7

[21] W. Shen, X. Bai, Z. Hu, and Z. Zhang. Multiple instance
subspace learning via partial random projection tree for local
reflection symmetry in natural images. Pattern Recognition,
52:306–316, 2016. 1, 2, 3, 6

[22] W. Shen, K. Zhao, Y. Jiang, Y. Wang, Z. Zhang, and X. Bai.
Object skeleton extraction in natural images by fusing scale-
associated deep side outputs. In International Conference on
Computer Vision and Pattern Recognition, pages 222–230,
2016. 1, 2, 3, 6, 7, 8

[23] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. In International
Conference on Learning Representations, 2015. 6

[24] C. L. Teo, C. Fermüller, and Y. Aloimonos. Detection and
segmentation of 2d curved reflection symmetric structures.
In International Conference on Computer Vision, pages
1644–1652, 2015. 1, 2

[25] N. H. Trinh and B. B. Kimia. Skeleton Search: Category-
specific object recognition and segmentation using a skeletal
shape model. International Journal of Computer Vision,
94(2):215–240, 2011. 1

[26] S. Tsogkas and I. Kokkinos. Learning-based symmetry
detection in natural images. In European Conference on
Computer Vision, 2012. 1, 2, 3, 6, 7, 8

[27] N. Widynski, A. Moevus, and M. Mignotte. Local
symmetry detection in natural images using a particle
filtering approach. IEEE Transaction on Image Processing,
23(12):5309–5322, 2014. 2, 6, 7, 8

[28] S. Xie and Z. Tu. Holistically-nested edge detection. In
International Conference on Computer Vision, pages 1395–
1403, 2015. 2, 6, 7, 8

[29] Z. Zhang, W. Shen, C. Yao, and X. Bai. Symmetry-based text
line detection in natural scenes. In International Conference
on Computer Vision and Pattern Recognition, pages 2558–
2567, 2015. 1


