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Abstract

Object proposal has been successfully applied in recent
visual object detection approaches and shown improved
computational efficiency. The purpose of object proposal
is to use as few as regions to cover as many as objects.
In this paper, we propose a strategy named Texture Com-
plexity based Redundant Regions Ranking (TCR) for object
proposal. Our approach first produces rich but redundant
regions using a color segmentation approach, i.e. Selec-
tive Search. It then uses Texture Complexity (TC) based on
complete contour number and Local Binary Pattern (LBP)
entropy to measure the objectness score of each region. By
ranking based on the TC, it is expected that as many as true
object regions are preserved, while the number of the re-
gions is significantly reduced. Experimental results on the
PASCAL VOC 2007 dataset show that the proposed TCR
significantly improves the baseline approach by increasing
AUC (area under recall curve) from 0.39 to 0.48. It also
outperforms the state-of-the-art with AUC and uses fewer
detection proposals to achieve comparable recall rates.

1. Introduction

For visual object detection, object localization is the first

and most important step. Conventional approaches that use

a sliding-window strategy [6, 7, 11] to localize objects,

tending to generate millions of candidate windows. The

classification of so many windows in the following detec-

tion step is computationally expensive, in particular, when

complex features and/or classification methods are used.

Recently, an alternative way, i.e. object proposal, has been

investigated to improve the efficiency of object localization.

Object proposal tends to produce much fewer (2 magnitude

fewer) object candidate windows than the sliding-window
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strategy, which, with no doubts, will contribute to improve

computation efficiency, as well as preserving the object de-

tection rate.

Over the recent detection proposal approaches, Hosang

et al. [13] carry out a performance comparison with respect

to their repeatability and recall. Selective Search [21, 22]

and EdgeBoxes [24]are regarded as two state-of-the-art ap-

proaches with high recall rates and efficiency. On one hand,

Selective Search is a typical superpixel merging method,

which generates criterion homogeneous regions with high

localization accuracy. It tends to produce tens of thousands

of windows and leads to serious redundancy problem. To al-

leviate such a problem, a pseudo-random algorithm is often

utilized to select the final proposals since there are no ob-

jectness for each region to determine the confidence to be an

object. On the other hand, EdgeBoxes, a typical objectness

method, takes the hypothesis that objects usually possess

more complete contours, and a sliding window strategy is

used to localize regions with complete contours as object

proposals. The using of complete contours helps it reduce

the redundancy of proposals, however, the sparse sliding

windows results in loss of aspect-ratio and localization ac-

curacy. Taking the complementarity of these two kinds of

methods inspires us to integrate them together to generate

object proposal with high accuracy and confidence.

We propose a strategy named Texture Complexity based

Redundant Regions Ranking (TCR) for object proposal.

Our approach first produces redundant regions using Selec-

tive Search. It then calculates a Texture Complexity (TC)

score for each region using complete contour number and

Local Binary Pattern (LBP) entropy. As the redundant re-

gions are generated mainly on the color cue, we propose us-

ing texture complexity cue as complementary. By TC score

based ranking, the recall of the region is preserved, and the

number of proposal regions is reduced significantly. The

novelty of our approach are summarized as follows:

• Proposing a robust objectness measurement named TC

score, which incorporates complete contour number
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Figure 1: Flowchart of the proposed TCR approach. In the second image, two boxes that best cover the objects (cows) and

15 randomly chosen boxes are shown among the results of Selective Search. Scored by TC score, the regions are shown in

the third image. A number of boxes (zero-scored ones with blue rectangles) could be removed by the ranking procedure and

the larger scored boxes (green rectangles) are brought forward.

and LBP entropy.

• Integrating superpixel merging and objectness meth-

ods for object proposal. We use Selective Search to

generate redundant regions, and rank the regions using

the TC score.

• Combining with other superpixel merging methods

easily without chaning any parameters.

The remainder of this paper has been organized as fol-

lows: we describe the related works in section 2. Then

the proposed TCR based approach is presented in section 3.

Experimental results are given in section 4, and we finally

conclude the approach in section 5.

2. Related works
Object proposal is defined as a procedure to discovery a

small set of bounding boxes that can precisely cover objects

as many as possible. Existing object proposal approaches

are coarsely categorized into superpixle merging based and

objectness based.

By solving a sequence of Constrained Parametric Min-

Cuts (CPMC), Carreira and Sminchisescu [3] propose gen-

erating figure-ground segmentations to indicate objects.

An image could generate up to 10,000 redundant regions,

which are subsequently ranked by a trained regressor. Ui-

jlings et al. [21, 22] propose a hierarchical strategy (Se-

lective Search) to merge color homogeneous regions and

generate object proposals. They propose using multiple

low-level features and merging functions to generate re-

dundant regions so that as many as objects are covered.

Such an approach has been successfully applied in the R-

CNN object detection research [12]. Similar to the strat-

egy of Selective Search, Manen et al. [17] propose using

learned weights as a function to merge superpixels. By tak-

ing advantages of both CPMC and Selective Search, Ranta-

lankila et al. [20] propose using a merging process with

a large pool of features, and generating segmentations us-

ing a CPMC-like process. One of the most recent meth-

ods, MCG [2], combines multi-scale hierarchical segmen-

tation regions into highly-accurate object candidates. MCG

achieves a high recall rate, but does not concern the im-

portance of computation efficiency. Xiao et al. [23] pro-

pose a complexity-adaptive metric distance used for super-

pixel merging, which achieves improved grouping in differ-

ent levels of complexity. Most of these superpixel merging

based methods produce lots of bounding boxes without as-

signing object confidence to them.

An early work on objectness based object proposal is [1].

Alexe et al. propose using objectness as a score of how

likely a detection window contains an object. The score

is estimated based on a combination of multi-cues includ-

ing saliency, color contrast, edge density, location and size

statistics. Chen et al. [5] propose Binarized Normed Gra-

dients (BING) using the sliding window method for ob-

ject proposal, which is based on an efficient weak classi-

fier trained using binarized normed gradients. With deli-

cate design of binary computations, a low computation cost

of BING is guaranteed, which, as reported, can reach 300

fps on a PC platform. EdgeBoxes [24] also operates in

a sliding window manner of multiple scales and multiple

aspect-ratios. The scores of objects are estimated by the

detected complete contour. Karianakis et al. [15] combine

the lower convolutional layers of Convolutional Neural Net-

works (CNN) with the fast boosting decision forests to pro-

duce robust object proposals. Different with the conven-

tional sliding window methods using image pyramid vary-

ing scales, the sliding window used for object proposal need

to consider the length-width ratio which varies for differ-

ent kinds of objects. However, the image cannot be slid

densely in these methods in order to decrease computational

efficiency, and the object proposals produced by objectness

based methods are often localized inaccurately.

Most recently, Chen et al. [4] focus on the object pro-

posal localization bias and propose Multi-Thresholding
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Straddling Expansion (MTSE) to reduce localization bias

using superpixel tightness. The tightness is just a property

of a region, so it also produces orderless object proposals.

In [16], a deep score is learned by CNN and is used for

update the confidence of object proposal. However, this

deep learning based objectness is data-driven, which needs

to be well trained when combining with superpixel merging

methods.

3. Approach
To fully excavate the complementarity of superpixel

merging and objectness, we propose a strategy, i.e., Texture

Complexity based Redundant Regions Ranking for object

proposal. The outline of TCR algorithm is shown in Fig-

ure 1. For an input image, tens of thousands of redundant

regions are generated using a color segmentation approach

and a hierarchical superpixel merging procedure (section

3.1). Texture Complexity (TC) score is then calculated to

measure the confidence of each region to be an object (sec-

tion 3.2). TC score based ranking is used to reduce the re-

dundancy of regions (section 3.3).

3.1. Redundant regions generation

Given an image, redundant regions are generated using

an image segmentation approach and a hierarchical region

merging procedure, i.e., Selective Search [21, 22]. The im-

age segmentation procedure first uses a graph-cut algorithm

to initialize the image into color homogeneous blobs, i.e.

superpixels. A blob merging process is then performed un-

til the whole image becomes a single region, as shown in

Figure 2. Regions are released when every two blobs are

merged from the hierarchical merging structure. To get a

high recall rate, it uses a variety of color spaces, differ-

ent similarity measures combination and initial blob sizes.

Specifically, five color spaces are used: HSV, Lab, the RG

channels of normalized RGB plus intensity, the Hue chan-

nel H fromHSV, and intensity. The four similarity measures

are color, texture, size and area.

The regions generated by the above procedure are ex-

Figure 2: The hierarchical structure of the Selective Search.

Blue boxes in right image are randomly selected false posi-

tives and the green boxes are true positives.

Figure 3: An edge map computed based on structured

forests.

tremely redundant because it incorporates a diversity of

merging procedures. Tens of thousands of region proposals

are generated for a natural scene image of resolution. Some

boxes are highly overlapped with each other, and one object

could be covered many times. To the best of our knowl-

edge, such a superpixel merging based approach is unable

tomeasure the objectness confidence of the regions. In order

to reduce the region number, a pseudo-random algorithm is

deployed, which, without any doubt, hurts the object recall

rate.

3.2. Texture complexity

Considering the redundancy of region generation with

superpixle merging based approaches, we propose a new al-

gorithm by adding the objectness measurement to rank the

generated regions. As the redundant regions are produced

mainly on the color cue, we utilize the texture complexity,

which consists of complete contour number and LBP en-

tropy, to supplement the color cue.

3.2.1 Complete contour number

For an edge map computed based on structured forests [8]

as shown in Figure 3, a complete contour is a group of adja-

cent edge points with an affinity orientation. The number of

complete contours that are wholly contained in a bounding

box is an explicitly powerful indication of the existence of

an object. LetX = {xn = (mn, on)}W×H
n=1 denote the edge

map of an image with size W × H , where mn and on are

edge magnitude and orientation of the pixel, respectively.

Supposing the set of edge groups in an image is S = {si},
the set of edge groups in a bounding box b is Sb ⊂ S. The
complete contour number in a bounding box is computed as

we =

∑
si∈Sb

f(si)mi

2(hb + wb)
κ , (1)
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wheremi is the magnitude ofsi, hb andwb are the width and

height of the bounding box. The perimeter of the bounding

box serves as its normalization factor, and κ is a parameter

used to offset the bias of larger windows having more con-

tours on average. The weight function f(si) is computed

by

f(si) =

⎧⎨
⎩

1−max
P

|P |−1∏
j=1

a(ōj , ōj+1) ifsi ∈ Sb

0 else

, (2)

where a (ōj , ōj+1) is the affinity of the mean orientations

of contour tj and contour tj+1, P is an ordered path with

length |P |, which is from t1 overlapping b to si. Once it

overlaps the bounding box b, one complete contour has lit-

tle chance to be a part of the object in this bounding box.

Its weight is certainly set to 0. Furthermore, those closely

associated with it may have the consistent orientations even

though they are completely located in b and they could con-

tribute trivially to the object in b with smaller weights.

On the pre-computed edge map, the confidence score for

each region is calculated with equation (1). The larger the

score is, the more compete contours exist in the box, which

tends higher confidence that the box is an object.

3.2.2 LBP entropy

We take the hypothesis that an object usually has dense

texture, while the background is always textureless or di-

verse, as shown in Figure 5. The LBP entropy captures

these differences, which verifies the hypothesis accordingly.

Firstly, LBP [18] is calculated on a 3× 3 patch as shown in

Figure 4. The central pixel is set to the base pixel. And the

neighbourhoods of a centre pixel are checked for evaluat-

ing the occurrences of equal/higher grey level values to the

base. The larger one is encoded with 1, and the smaller is set

to 0. An eight-bin code (256 patterns) is obtained according

to an ordered connection of the binary values. Specifically,

LBP entropy of a region is computed as

wt = −
∑255

i=0
pi log pi, (3)

where pi is the probability of the pattern, which can be de-

rived by

pi =
Ni∑
Ni

=
Ni

hb × wb
, (4)

Figure 4: Local Binary Pattern.

Figure 5: LBP histogram and entropy.

where Ni is the number of the i−th pattern, hb and wb are

the width and height of a region, respectively. As shown in

Figure 5, the LBP entropy of an object region is neither very

large nor very small.

Measuring objectness with LBP entropy is efficient, be-

cause the LBP feature for each region is easily obtained

from the pre-computed image feature map and LBP entropy

is computed without size alignment.

3.3. TCR

The distributions of complete contour number and LBP

entropy on PASCAL VOC 2007 train dataset are shown in

Figure 6. According to Figure 6(a), object proposal is a

trade-off between the recall rate and the window number

(redundancy). Following increase the threshold of complete

contour number, the redundancy decreases but the recall of

positive samples is hurt. In order to achieve a high recall

rate, it requires to use a small threshold value. However,

it means more false positives. We combine LBP entropy

to complete contour number to reduce the false positives.

According to Figure 6(b), the LBP entropy variance of pos-

itives is less than negatives. Therefore, we propose a gate

function for LBP entropy as

g(wt) =

⎧⎨
⎩

1 if wt ∈ (Tml, Tmr)
0.5 if wt ∈ (Tl, Tml] ∪ [Tmr, Tr),
0 else

(5)
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0.08
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Negative Sample

(a) Complete contour number

0 0.2 0.4 0.6 0.8
0
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0.2

0.3
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0.5
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(b) LBP entropy

Figure 6: The distributions of positive and negative samples

on the PASCAL VOC 2007 train dataset.
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where Tl, Tml, Tmr, and Tr are four thresholds. The box

is brought forward if its LBP entropy is close to the peak

value of the distribution. It means it is more likely to be

an object. We remove the boxes with too large or too small

LBP entropy value. These boxes are usually textureless or

background regions. With the complete contour number in

equation (1) and LBP entropy in equation (3), the combined

TC score for a region is defined as

o = we · g(wr). (6)

We rank the redundant regions using TC scores to reduce

the redundancy, i.e. object proposal number.

4. Experimental results
4.1. Metrics

Dataset. Following [1, 5, 19, 24], we evaluate our ap-

proach on the PASCAL VOC 2007 dataset [10]. The dataset

consists of train (4501 images), validation (2510 images)

and test subsets (4952 images). We acquire the parameters

of our TC score on the train dataset, illustrate the efficiency

of incorporation approach TCR on the validation dataset,

and compare our approach with the state-of-the-art on the

test dataset.

Evaluation procedures. We follow the same evalua-

tion procedure as [24], using recall, proposal number, and

proposal-object overlap (Intersection over Union, IoU).

• Recall: With higher recall, the following classifier is

more potential to get high detection accuracy. If one

object is missed in the object proposal stage, the clas-

sifier can no longer detect the object.

• Proposal number: Less proposal number is the effi-

ciency guarantee of the following classifier.

• IoU: Larger IoU means more accuracy localization, so

that the following feature extraction methods can ex-

tract more rich information features.

Better approaches are recognized by fewer proposals and

larger IoU, while keeping the recall rate. There are three

commonly used experimental setups: recall vs. window

0 2 4 6 8
0

0.005

0.01

0.015

0.02

Positive Sample
Fitting

(a) Fitting

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Positive Sample
Gate Function

(b) Gate function

Figure 7: Compute the parameters of the LBP entropy term.

number with given IoU, recall vs. IoU with given proposal

number, and the minimum proposal number with given re-

call and IoU.

Parameters. In the contour number term of TC score,

is set to be larger than 1 to reject large windows. Fol-

lowing the setting in [24], we set . In the LBP entropy

term, we get the parameter from PASCAL VOC 2007 train-

ing set. Since the two sides of the positive samples dis-

tribution have the different slope, two-term Gaussian is

used to fit the distribution, as shown in Figure 7(a). With

the experimentally determined Gaussian parameters μ1 =
5.080, δ1 = 0.285, μ2 = 4.728, δ1 = 0.486, we set TL =
μ2− 2δ2, TM1 = μ1− δ1, TM2 = μ1+ δ1, TR = μ2+2δ2.
The gate function is shown is Figure 7(b).

4.2. Comparison with baseline

Selective Search [21, 22]is used as the baseline of our

TCR approach. Given a box, TC score is calculated using

equation (6). The efficiency of TCR is evaluated on PAS-

CAL VOC validation datasets. Figure 8 illustrates the com-

parison between the TCR approach and the baseline.
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Figure 8: Comparison with the baseline approach.
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Figure 9: Object proposal examples of the PASCAL VOC 2007 validation dataset. In each image, ground-truth boxes are

annotated in solid lines, for which a highly overlapping proposal exists (with the corresponding proposals shown as green

dash rectangles) and red rectangles are ground-truth boxes that are missed. The first row is from Selective Search and the

bottom row is from our TCR approach.

Recall vs. the number of proposal is shown in Figure

8(a) with IoU 0.7. It can be seen that TCR significantly

improves the recall rate more than 10% when using 100 or

1000 proposals. Recall is improved to 0.87 while Selectives

Search is 0.85. In addition, TCR needs only 720 detection

proposals to reach 75% recall rate, while Selective Search

needs 1777.

Recall vs. IoU is shown in Figure 8(b) when using 1000

detection proposals. In Figure 8(b), it can be seen that TCR

outperforms Selective Search when IoU ranges from 0.5 to

0.81. When IoU is larger than 0.81, TCR reports a lower

rate than Selective Search, which may due to the fact that

TCR further employs a Non-Maximum Suppression (NMS)

procedure. However, the IoU larger than 0.5 is usually good

enough for the detection and classification tasks, one can

conclude from Figure 7(b) that TCR outperforms the base-

line with respect to recall vs. IoU.

Examples of object proposals are shown in Figure 9.

With IoU = 0.7, we choose 1000 detection proposals to il-

lustrate the ground-truth matching results. It indicates that

our TCR can bring forward the more accuracy location pro-

posals from the first two columns, and the boxes which is

more potential to be an object from the third column. The

last column illustrates a missed object (the black-dressed

man). The reason of such missing detection is that the dis-

tribution of LBP is regular, so that it is invalid as the entropy

is too small.

4.3. Comparison with the State-of-the-art

We compare TCR against recent approaches including

Objectness [1], MCG [2], CPMC [3], BING [5], Endres [9],

Rigor [14], RandomizedPrims [17], Rahtu [19], Ranta-

lankila [20], Selective Search [21, 22], complexity-adaptive

(CA ) [23] and EdgeBoxes [24]. Results of compared ap-

proaches are provided by Hosang et al. [13], and curves

are generated using the Structured Edge Detection Toolbox

V3.0 [24].

Recall versus number of proposal is illustrated in Figure

10, and we compare recent approaches using IoU thresholds

of 0.5, 0.6 and 0.7. The red curves show the recall perfor-

mance of TCR. It can be seen in Figure 10 that the recall of

TCR approach outperforms the state-of-the-art, in particu-

lar, when IoU = 0.7. Recall versus IoU is shown in Figure

11. The number of proposals is set to 100, 500 and 1000,

respectively. Varying IoU from 0.5 to 0.75, Endres, CPMC

and MCG perform slightly better than TCR with 100 pro-

posals. Nevertheless, TCR achieves the highest recall rate

given 500 and 1000 proposals.

In table 1, we compare the numbers of proposals re-

quired by each approach with 25%, 50% and 75% recall

rates and IoU 0.7. It can be seen that the TCR approach

has the highest recall rate of 0.89 when using thousands

of bounding boxes. TCR needs 535 detection proposals to

achieve 75% recall rate. It’s the fewest among all compared

approaches. TCR uses only 12 and 91 detection proposals

to achieve 25% and 50% recall rates, respectively, which

small enough with all compared approaches. In table 1, it

can be seen that the AUC of TCR is 0.48, which is the high-

est among all compared approaches. All the comparisons in

table 1 confirm that TCR improves the state-of-the-art.
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Figure 10: Comparing results with the state-of-the-art using recall versus number of proposals. (Best viewed in color).
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Figure 11: Comparing result with state-of-the-art using Recall versus IoU. (Best viewed in color).

Method AUC N@25% N@50% N@75% Recall

BING [5] 0.20 302 - - 0.28

Rantalankila [20] 0.25 146 520 - 0.70

Objectness [1] 0.27 28 - - 0.38

RandomizedPrims [17] 0.35 42 358 3204 0.79

Rahtu [19] 0.36 29 310 - 0.70

Rigor [14] 0.38 25 367 1961 0.81

Selective Search [22, 21] 0.39 29 210 1416 0.87

CPMC [3] 0.41 17 112 - 0.65

Endres [9] 0.44 07 112 - 0.66

MCG [2] 0.46 10 86 1562 0.82

EdgeBoxes [24] 0.47 12 96 6558 0.88

TCR (our approach) 0.48 12 91 535 0.89

Table 1: Comparison results of the performance using TCR with relevant methods.
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4.4. Extending to other proposal generation method

As discussed in section 4.1, we statistic the TC score di-

rectly on the ground-truth of training dataset, getting the

thresholding parameters of the gate function . It means

the TCR approach can be added to other region generation

methods without re-training like DeepBox [16]. We evalua-

tion TCR approach with some other recently region genera-

tion method, i.e. MCG [2], the method CA [23], mtseMCG

and mtseSS [4].

The pairwise comparison results are shown in Figure 12

and table 2. Mostly, the AUC is increased when adding

the TCR to either of the region generation methods. The

number of proposal decreases significantly compared with

to the original methods. With CAmethods, the recall cannot

get to 75% as there is a Nox-Maximum Suppression (NMS)

operation after superpixel merging. As the same reason of

CA, the NMS in our approach also gets some bad influences

to the recall results for MCG, CA, mtseMCG and mtseSS.

In mtseSS, the recall keeps 0.89 and gets the highest recall

of these compared methods in table 2.
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Figure 12: Comparison with the baseline approach.

Method AUC N@75% Recall

MCG [2] 0.46 1562 0.82

MCG-TCR 0.46 922 0.78

CA [23] 0.42 1418 0.78

CA-TCR 0.46 - 0.73

mtseMCG [4] 0.47 672 0.89

mtseMCG-TCR 0.48 496 0.84

mtseSS [4] 0.41 1112 0.89

mtseSS-TCR 0.47 589 0.89

Table 2: Comparison results of the performance using TCR

with relevant methods.

It’s interesting to see that Selective Search is the most

stable performance method, either integrated with the tight-

ness to prevent the bias of localization, or integrated with

our proposed objectness TC score to reduce the number of

bounding boxes.

5. Conclusions

Object proposal methods reduce object candidate win-

dows from millions of sliding windows to thousands of

regions. Our motivation is that the proper integration of

color, texture complexity cues contributes to better object

proposal. To fully integrate accuracy localization of color

based superpixel merging methods and the ranking confi-

dence of the objectness based methods, we propose a strat-

egy named Texture Complexity based Redundant Regions

Ranking (TCR) to further improve the performance of ob-

ject proposal. Selective Search is employed to output re-

dundant regions, and TC score is computed to measure the

confidence of a region to be an object. TC score consists

of two terms, complete contour number and LBP entropy,

which can be efficiently calculated with the pre-computed

edge and LBPmaps. Through a gate function, the two terms

are fused together to reduce the redundant of regions, which

essentially improves the accuracy and efficiency of overall

object detection system. In addition. TCR is easy to ex-

tend to some other region generation methods and reduce

the object proposal number.

Acknowledgement

This work was supported in part by the National Sci-

ence Foundation of China under Grant 61271433, Grant

61202323 and Beijing Municipal Science and Technology

Commission.

1090



References
[1] B. Alexe, T. Deselaers, and V. Ferrari. Measuring the object-

ness of image windows. Pattern Analysis and Machine In-
telligence, IEEE Transactions on, 34(11):2189–2202, 2012.

[2] P. Arbeláez, J. Pont-Tuset, J. Barron, F. Marques, and J. Ma-

lik. Multiscale combinatorial grouping. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 328–335, 2014.

[3] J. Carreira and C. Sminchisescu. Cpmc: Automatic object

segmentation using constrained parametric min-cuts. Pattern
Analysis and Machine Intelligence, IEEE Transactions on,
34(7):1312–1328, 2012.

[4] X. Chen, H. Ma, X. Wang, and Z. Zhao. Improving ob-

ject proposals with multi-thresholding straddling expansion.

In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2587–2595, 2015.

[5] M.-M. Cheng, Z. Zhang, W.-Y. Lin, and P. Torr. Bing: Bina-

rized normed gradients for objectness estimation at 300fps.

In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 3286–3293, 2014.

[6] N. Dalal and B. Triggs. Histograms of oriented gradients for

human detection. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, volume 1, pages

886–893, 2005.

[7] P. Dollár, R. Appel, S. Belongie, and P. Perona. Fast feature

pyramids for object detection. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 36(8):1532–1545, 2014.

[8] P. Dollár and C. Zitnick. Structured forests for fast edge de-

tection. In Proceedings of the IEEE International Confer-
ence on Computer Vision, pages 1841–1848, 2013.

[9] I. Endres and D. Hoiem. Category-independent object pro-

posals with diverse ranking. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 36(2):222–234, 2014.

[10] M. Everingham, S. A. Eslami, L. Van Gool, C. K. Williams,

J. Winn, and A. Zisserman. The pascal visual object classes

challenge: A retrospective. International Journal of Com-
puter Vision, 111(1):98–136, 2015.

[11] P. F. Felzenszwalb, R. B. Girshick, D.McAllester, and D. Ra-

manan. Object detection with discriminatively trained part-

based models. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 32(9):1627–1645, 2010.

[12] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-

ture hierarchies for accurate object detection and semantic

segmentation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 580–587,

2014.

[13] J. Hosang, R. Benenson, and B. Schiele. How good are de-

tection proposals, really? arXiv preprint arXiv:1406.6962,
2014.

[14] A. Humayun, F. Li, and J. Rehg. Rigor: reusing inference

in graph cuts for generating object regions. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 336–343, 2014.

[15] N. Karianakis, T. J. Fuchs, and S. Soatto. Boosting convo-

lutional features for robust object proposals. arXiv preprint
arXiv:1503.06350, 2015.

[16] W. Kuo, B. Hariharan, and J. Malik. Deepbox: Learning ob-

jectness with convolutional networks. In Proceedings of the
IEEE International Conference on Computer Vision, pages
2479–2487, 2015.

[17] S. Manen, M. Guillaumin, and L. Gool. Prime object propos-

als with randomized prim’s algorithm. In Proceedings of the
IEEE International Conference on Computer Vision, pages
2536–2543, 2013.

[18] T. Ojala, M. Pietikäinen, and T. Mäenpää. Multiresolution

gray-scale and rotation invariant texture classification with

local binary patterns. Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on, 24(7):971–987, 2002.

[19] E. Rahtu, J. Kannala, and M. Blaschko. Learning a category

independent object detection cascade. In Proceedings of the
IEEE International Conference on Computer Vision, pages
1052–1059, 2011.

[20] P. Rantalankila, J. Kannala, and E. Rahtu. Generating ob-

ject segmentation proposals using global and local search.

In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2417–2424, 2014.

[21] J. R. Uijlings, K. E. van de Sande, T. Gevers, and A. W.

Smeulders. Selective search for object recognition. Interna-
tional journal of computer vision, 104(2):154–171, 2013.

[22] K. E. Van de Sande, J. R. Uijlings, T. Gevers, and A. W.

Smeulders. Segmentation as selective search for object

recognition. In Proceedings of the IEEE International Con-
ference on Computer Vision, pages 1879–1886, 2011.

[23] Y. Xiao, C. Lu, E. Tsougenis, Y. Lu, and C.-K. Tang.

Complexity-adaptive distance metric for object proposals

generation. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 778–786, 2015.

[24] C. L. Zitnick and P. Dollár. Edge boxes: Locating object pro-

posals from edges. In Computer Vision–ECCV 2014, pages
391–405. Springer, 2014.

1091


